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PREFACE

The present volume deals with variational methods for the optimization of motion of aircraft and other
objects often encountered in modern technology. The development of aeronautics and astronautics progres-
sively focuses ever increasing attention on the determination of optimum flight programs characterized by
minimum time, minimum fuel consumption, maximum range, minimum cost, etc, Numerous publications
which appeared in the USSR and in the West during the last 20—25 years deal with various aspects of this
optimization problem. The leading contributions were made by I V, Ostoslavskii, D, E.Okhotsimskii, A. A.
Kosmodem' yanskii, and A. Miele, Their work played an important role in the development of controlled
flight mechanics; they were also the first to come face to face with the fundamental difficulties that to this
date plague us in the solution of modern optimal problems. These difficulties are a result of the complex
and varied conditions that must be taken into consideration when formulating and solving the various problems,
The following factors fall under this category:

1) various inequality restraints are imposed on the system variables by physical and practical considerations
(restraints on altitude and velocity, on the overload, angle of attack, engine thrust, ete.);

2) one is required to determine the absolute minimum, rather than a local (or relative) minimum;

3) the sought optimal control often does not exist in the class of admissible controls in the classical for-
mulation of the problem or, in more general terms, we have to deal with degenerate problems,

The above features are characteristic of all optimal control problems, and are not specific to flight
dynamics. The difficulties can be overcome in two ways. The first approach called for modernizing the
standard classical methods (transformation of variables, introduction of additional variables, direct analysis
of variations). The second approach involved more radical measures, i.e., development of new optimal
principles with logic not affected by the above considerations.

It is this second approach that produced the new optimization methods due to R. Bellman (dynamic
programming), L, S, Pontryagin (the maximum principle), and the variational methods which constitute the
basis of our book.

The monograph presents a systematic review of the authors’ results obtained over a number of years, It
is divided into six chapters and a Supplement, Chapter I reviews the elements of the theory of variational
methods, Unlike the traditional approach, the variational technique also covers the case when the sought
optimal control does not exist in the class of admissible controls and the solution must be derived by construct-
ing a minimizing sequence. This is a typical case often encountered in modern practice. The fundamental
theorem of the sufficient conditions of the absolute minimum of a functional is then applied to reduce the
problem of functional minimization to the problem of maximum of some function R of the problem variables
for every fixed value of the argument,

Chapter II describes in detail a number of particular methods. The equations of Pontryagin's maximum
principle are derived in § 2,1, and the reader is acquainted with this method from a new angle, These
equations are then reinforced with new conditions of a strong local (relative) minimum, Significantly, these
conditions are linked with the classical sufficient conditions of variational calculus, Jacobi's famous condition
is seen to be equivalent to the requirement of negative-definiteness of the second differential of the function R.

The important concept of the synthesis of optimal control is also dealt with in this chapter., Bellman's
equation is derived as a particular case from the conditions of the fundamental theorem, and thedifferent forms
of solution of the optimal problem — synthesis and program — are briefly illustrated. The complete solution
for the synthesis of linear systems is given, The method of approximate synthesis and, primarily, the a priori
upper-bound estimate of the solution accuracy are of the greatest practical importance among these topics,
New methods of this kind are of great value, since the Bellman equation often proves too complicated for
practical application and its exact solution too problematic,

Chapter III considers the structure and the analysis of degenerate and sliding controls. The treatment
starts with a description of the construction of a sliding-control minimizing sequence; the construction is

vii



first described for a simple example and then in a more general form, depending on the properties of the
function R, The methods of Pontryagin and Bellman are then generalized to the case of degenerare solutions.
The last sections of the chapter present a new special method particularly suitable for degenerate and sliding
controls, the method of multiple maxima, This method is highly effective for flight dynamic problems.

Also of considerable interest is the theoretical application of this method to the investigation of the
degenerate second variation of the functional, This approach leads to a natural generalization of all the
standard conditions of variational calculus, including Jacobi's global condition, to the case of degenerate
solutions.

This method is still in the development stage, but the results summarized in this book are quite sufficient
to illustrate its great potential, in particular, for qualitative analysis of various problems with the purpose of
deriving “quick" estimates, This is a highly valuable attribute at the design and synthesis stage, when exact
solutions are meaningless, insofar as the system parameters have not been fixed,

The next two chapters deal with applications. Chapter IV presents solutions of a number of problems
of powered flight dynamics, First to be considered is the elementary problem of the vertical ascent (descent)
of a rocket in vacuum. The well-known solution of this problem is derived here as an illustration of the
applications of the new methods (here, as in most other applications, the method of multiple maxima is
employed). The general problem of rocket dynamics in a homogencous field in a vacuum is then considered,
The application of the new method leads to an original treatment of this problem and yields new simple
equations of optimal motion, with coasting integrals playing the role of variables and the direction of thrust
and time figuring as controls,

Next to be considered is the so-called classical problem of flight dynamics, e.g., the problem of powered
ascent of an aircraft. It was previously solved by different methods by Ostoslavskii, Egorov, and Miele, The
application of our new method yields a more accurate result; in the case of several extremals (e.g., the
typical situation in supersonic flight) the transition points between the different extremals are naturally
determined.

The last section of chapter IV illustrates a detailed construction of an approximate synthesis of optimal
aircraft control on the ascent section., The synthesis of optimal control is the most desirable form of solution
of the optimal problem, but it is more time- and labor-consuming than the construction of the optimal
program, This feature is probably linked with the infrequent use of synthesis solutions in nonlinear systems,

Chapter V investigates optimal coasting controls of winged aircraft subjected to lift, Minimum-time
and minimum-heat descent programs are discussed, using various characteristic restraints (on altitude, angle
of artack, temperature, overload, etc.), The method of multiple maxima is again very effective in this
case, as it yields approximate optimal solutions (with detailed accuracy estimates) in the form of finite ex-
pressions, without involving the engineer in a tedious and difficult solution of boundary-value problems.

Note that the sought optimal control is found to be a sliding control for the angle of attack over a considerable
length of the trajectory; in practice, it can be realized by a relay control with a moderate switching frequency,

Chapter VI presents an analog of the optimum principle for discrete control systems described by finite-
difference equations. Although the treatment is purely theoretical, its practical value is self-evident in the
light of ever increasing computer applications, Optimal problems using differential equations are converted
into finite-difference schemes for computer solution,

The Supplement at the end of the book is fundamentally different from the earlier chapters. It wiil be
of interest to readers who wish to acquaint themselves with the basic problems of variational calculus and
with the fundamental ideas that served as a point of departure for this monograph, The Supplement also
contains a useful solution of the problem of maximum-range horizontal flight of an aircraft.

The authors acknowledge the great help of Acad. A.M. Letov, who reviewed the manuscript and made
a number of valuable comments, The authors are also grateful to the scientific editor of the book, I V.
Ioslovich, for his efforts.

Reader's comments will be most welcome. Please address all correspondence to "Mashinostroenie”
Publishing House, Moscow, K-51, Petrovka 24,
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INTRODUCTION

Various problems of science and technology often require choosing
the best, or the optimum, solution among a set of all the possible
alternative solutions. The mathematical formalism of problems of this
kind generally operates with two concepts: the concept of a set and the
concept of a functional defined over a given set. Examples of sets
are the set of all real numbers between 0 and 1, the set of all possible
directions of the thrust vector of an aircraft engine, the set of all possible
trajectories taking an aircraft to a given altitude, etc.

A functional is said to be defined over some set if we know how to
assign a definite number to each element of the set.

Consider some simple examples of functionals.

1. Consider the set of all plane curves. To each curve we assign a
certain number — its length. The length of a curve is thus functional.

2. Consider a point in the (x, y) plane which may move along any path
between two given points A and B so that it has a definite velocity V(x, y)
at every point (x, y) of the path. Assigning to each path of the set the time
to traverse that path, we obtain a functional.

3. The maximum surface temperature of a spacecraft during atmo-
spheric reentry is a functional which depends on the trajectory of the
spacecraft.

The general formalism of choosing optimum solutions (according to
certain ''quality" criteria)operates with a fixed set M and a functional
I(v), vE M, defined over the elements of this set which characterizes the
quality of the element v, so that if an element v, is ''better' than an
element vy in a certain sense, [(v;)<[/(v2) and vice versa. The problem
is thus formulated as follows: find an element v of the set M for which the
functional I(v) has its minimum value /(v)=m. This problem, however,
is not always solvable. The set being considered does not always contain
an element v satisfying the exact equality /(v)=m. For example, the
function y=ax+b, a>0, attains its minimum at the point x=0 on the set of
the points x between 0 and 1, provided this set is closed, 0<x<l1; the
minimum is not attained on any point of the set if it is open, 0<x<l. A
slight modification in the statement of the problem eliminates the difficulty.
The final formulation reads as follows: consider a set M and a functional
I(v) on this set, vCM. Find a sequence of elements of the set M,
{v;}=M, for which I(v;) —m for s—oo. The resulting sequence is known
asa minimizing sequence. It always exists, in virtue of the
definition of the exact lower bound m=i}1”'1f1. The minimal element # may

be treated as one of such minimizing sequences defined in the form v,=v
for all s.




In what follows, we will deal with more tangible problems: determination
of the optimal control for objects described by ordinary differential
equations or by their discrete analogs — the finite-difference equations.

As a preliminary step, we have to consider in some detail the concept of a
controlled system (or controlled object).

A typical example of a controlled system is provided by an aircraft.

The vector equations of motion of the center of mass of an aircraft in
an inertial frame of reference have the form

mV=F;
Py (1.1)
ﬂ"[= —@fy

where _r: V are respectively the radius vector and the velocity vector of the
center of mass of the aircraft; mis the mass; ffis the mass (propellant)
consumption per second; Fis the resultant vector of all the external forces.

When solving the equations of flight dynamics, the motion of an aircraft
is generally considered in the wind system of coordinates /4/:

V:L[Pcos(a—'f)cosE—Xcosﬁ-{—Zsinﬁ--—
m

— G sind];
O_—_—]V“{P [sinn (e—g) cos v, 4 cos(a—g¢)sinBsiny J—

m

— X sinfsiny, 4V cosy,— Z cosBsiny, — G cos §); (L 2)

. 1

be = mV cos 0
—¢)sinBcosy |+ X sinBcosy, 4V siny,+
-+ ZcosBcosvy.|;

A=V sin0; m= — B x=V cos9,

{|Plsin(a—9)siny,~cos(o—

where V is the velocity; # the altitude; x the range on the Earth's surface;
0 the angle of inclination of the trajectory to the local horizon; a the angle
of attack; ¥Y.the angle of yaw; f the angle of side slip; vthe angle of bank;
¢ the angle between the thrust vector and the velocity vector; P engine
thrust; G aircraft weight; X, VY, Zthe drag, the lift, and the side force,
respectively:

X=c.(M, a) 2825 ¥ —c,(M,0) £V

S;
2

Z:cz(M,a)%)w s,

where o(/) is the density of the atmosphere; S is the effective wing area;

M is the Mach number, equal to the ratio of the flight velocity to the velocity
of sound a(/) at the given altitude; c., ¢, and ¢; are the aerodynamic
coefficients.



Equations (I 2) relate two essentially different groups of variables. The
variables 4, V, 6, ¢, x and m enter (1.2) together with their first deriv-
atives and thus characterize the state of the system at any time f; the
number of these variables is equal to the order of the system.

Such variables are generally known as phase coordinates. The
variables «, B, ye» @, and Ps enter (1.2) without their derivatives and thus
act as free variables. They may be defined quite arbitrarily as certain
functions of time, and they determine the solution of the system (the
behavior of the controlled system) for a given initial state Ao, Vi, 0y, $eo, Mo.
Variables of this kind are known as control elements or controls,

The classification of the variables into phase coordinates and control
elements is closely linked with the particular choice of the mathematical
model of the controlled system. In some problems the mathematical
model (system (1. 2)) provides an insufficiently accurate description of the
actual behavior of the aircraft and it can be improved by supplementing it
with the equation of the angular motion of the aircraft about its center of
mass. In this system, the variables o, B and y. become phase
coordinates, and the rudder deflection angles assume the role of control
elements. On the other hand, in some problems, certain phase coordinates
may be upgraded to the status of control elements without any detrimental
effects; this would involve dropping the corresponding differential equations
from the mathematical model. This approach was actually applied by some
authors /4, 8/ in solving the problems of powered ascent of aircraft, when
the trajectory inclination angle 0 was used as a control element.

In practical problems, besides differential equations we have to consider
further a variety of constraints and conditions on the variables which stem
from the particular properties of the controlled system. The following
typical constraints are imposed on aircraft flying in the denser atmospheric
layers: the altitude h>0, the angle of attack owin <o <wnax, the dynamic

head ¢="10V3<¢max, the total overload N = —(17— VX2hVe) +YE iV <

<N max, the surface temperature Ty(#, V, a)<Tymax. Certain additional
conditions are also imposed on the initial and the final state of the object.
Thus, a vehicle is intended to transport some payload from the point of
origin hy, %o on the ground, where it was at rest (V;=0), toacircular orbit
at altitude h;(0;=0, V,=V,,). The different control programs satisfying all
these requirements will be referred to as admissible alternatives.
The set of all admissible control programs D may be identified with the
set M in the general formulation. We will consider integral
functionals defined over the set D: these are integrals taken between
certain time limits over some functions of the phase coordinates and control
elements or functions of initial and final states, or linear combinations of

these states. Examples of such functionals for aircraft are the flight range
{5y

‘S Vcos@df, the flight duration ¢,—f , fuel consumption my—n;, the final
altitude f,, the final velocity Vi, etc.

We are thus dealing with the following general problem.

Consider a system of differential equations describing a controlled
system,

g=f(t y, u), (L 3)



where y=(y', % ..., y") is the n -dimensional vector of the phase coor-
dinates, u=(u!'. u?, ..., ur)is the r-dimensional vector of the control
elements.

The variables y, u for every ¢ may take on certain values from some set
V (¢} defined by the additional constraints

(g, w) CV(2). (L 4)
The projection of this set onto the space of the phase coordinates Y at
every ¢ will be designated V,(¢), yC V,(f), and its cross section for any ¢ and

y will be designated V(4 y), &V, (¢, y). Expression (1. 4) incorporates, in
particular, the boundary conditions

Yo EVylto), yy € Vy(t),

where y(t) =yo, y(t1)=u.
In the set D of the pairs of vector functions y(f), u(f) satisfying the above

conditions, find a sequence {js(¢), 4s({)} over which the functional

/:f Fot, y w)di+ F (yo, ) (1.5)

goes to its exact lower bound in the set, [(y:(f), us(f)) —inf/. In particular,
D

if we assume that the least value of the function / is attained on some
element j(?), u(f) of class D, our problem is to find this element:

1y, wn)=ni 1, (1. 6)

Let us now consider briefly the generally accepted methods of solving
problems of this kind.

Pontryagin's maximum principle

Let, for simplicity, the set V, be constant (independentof ¢ and y ), the
boundary conditions fy, ¢, 40, Y fixed, the set Vy(¢) for any tZ(ty, ¢;) coincide with
the space Y (there are noconstraints onthe phase coordinates), and F(yo, y1)=0.

To solve the problem, we define a function of (2n+r+2) variables (the
problem Hamiltonian)

-

H(tv 11’0, "‘p’ Y, Ll) =2 wl'fi(tv Y, u) +¢0i0(t1 Y, u)! (1- 7)
i=1

where Y= (Y1, Pz, ..., Pn) is an n -dimensional vector, the first term on the
right is a scalar product of n -dimensional vectors. The so-called adjoint
system of n differential equations is then added to the starting equations:

b= O (L 8)



The maximum principle is expressed by the following theorem.
Theorem I.1. Let (§(¢f). u(f)) €D be a solution of the problem, i.e.,
the point of D minimizing the functional /. Then there exisis a vector
(o, W(?)) which is not identically zero, where ¥(f) is the solution of (1. 8)
for y=g(t), u=a(t), Yo isanonpositive constant, suchthat for all & [f, 4] the
function H(f, 7{), Po, P (1), u) attains its absolute maximum on V. for u=u:

H (£, 5(&)40 9(8), @ (O)=3up H (£, 4 (¢), 4o, B (1), ) =p () (1.9)

and the function p(¢{) is continuous over [l #] .

The proof of this fundamental theorem will be found in /6, 2, 3/.

Equations (I. 8) — (L. 9) are the necessary conditions for an optimum
solution j(f), z(f). Together with equations (I. 3), they constitute a system
of ordinary differential equations of order 2n, closed by the finite relation
(1. 9); on a given segment [f, ;] the solution of this system (y(f), ¥(?), u(8))
should satisfy 2n boundary conditions which constrain the phase path y(f) to
pass through given points yo, y; at times { and {;, respectively.
In other words, the maximum principle reduces the optimization problem
to a boundary-value problem for a system of ordinary differential equations.
The solution of this boundary-value problem, in general, may prove to
be different from the sought optimum solution, since the equations of the
maximum principle provide only the necessary conditions of optimality.
However, if we can be certain that, first, the minimum of the functional
exists (in the set D ) and, second, the solution of the boundary-value
problem is unique, the solution obtained by this method is indeed the
optimum solution.

The maximum principle generalizes the classical optimum conditions
— the Euler—Lagrange equations and Weierstrass's condition — to the case
of a closed and bounded set V, (these are the conditions mostly encountered
in practice). If the set V, coincides with the entire space U, we have
from (1. 9)

Hu(t, §, ¥, w) =0, (1. 10)

where Hy=(Hup, Huy, ..., Hu,) is the vector of the partial derivatives of

the function H with respect to the components of the vector « . Equations

(1. 3), (1.8), and (1. 10) form a system of canonical Euler—Lagrange equations
for the functions y(¢), P({), u(¢). The functions Yo, Y1), P2(f), ..., Pu(f)
coincide in this case with the Lagrange multipliers, and relation (1. 9)
coincides with Weiersirass's necessary condition. Indeed, from the
definition of the supremum, (I.9) implies that

H(t, g, ¢, B)—H(, 7, v, u) 20, (L.11)

for any u € V.

In general, when the set V, is closed, the point at which the function
H(u) reaches its maximum need not be a stationary point of the function, so
that the Fuler—Lagrange equations (I. 10) are not always the necessary
conditions of optimum.

Note that various transformations mapping the set V., onto some open
set, which are widely used by various authors (e.g., /7—9/) in conjunction
with the apparatus of variational calculus, lead to the equations of the
maximum principle (1. 3), (I.8), (I.10), if their application is valid.



Example .1, As an example, let us consider the problem of the
shortest path between two given points A and B. The set D of all the ad-
missible paths is limited by additional conditions requiring single-valuedness
of y(x), 2(x) on (xa, x8) . The functional and the equations describing the
set D then take the form

B
1={ Vit wtordx (I.12)
A

dy . dz

y:;}‘ :u;z:;: v; (I. 13)
Y =ya ylxg)=yg (1. 14)
z2(x,)=2z,; 2(xz)=2z. (1. 15)

Here the rectangular coordinates y and z are the phase coordinates
of the problem, and the derivatives of the functions y(x) and z(x) are the
control elements.

The vector P should also have two components. We designate them 1,
and ¢, , respectively: p= ({y, P2).

By /6/, we have

H (xslPOv‘Pyquz’ %Z1uy'0)=‘Pyu+‘Pz'U"|‘q’o L 1+u2my

i. e., the function H depends only on the vector ¢V and the control elements
u, v. Equations (1. 8) thus take the form

Py =0; $.=0,
whence it follows that the components of the vector ¢y are constant:
Py =const; 1, =const.

Let us investigate the maximum of H with respect to u. For ¢,=0,

H has a maximum only for ¢,=vy.=0. The trivial solution ¢o=v;=1v,=0
does not satisfy the maximum principle, and we therefore have to take
Yo7#0. For any given X, $s<0, P, ¥, , the function H (u, v) has a single
point of maximum, &, 7, which is independent of x.

Using equations (1. 8), we find that the shortest path is the line of constant
slope, i.e., a straight line; since only one straight line can be passed
through two given points, the shortest path is unique. Since the shortest
path between two points certainly exists, we conclude that our solution
indeed gives the shortest path — the straight line joining the points A and B.

Bellman's dynamic programming method

Consider a particular case of the general problem, when the initial
values of ¢ and y are fixed, the final value of f is given, but no constraints
are imposed on the final value of y. Moreover, there are no constraints



on the phase vector in the entire interval (f, f;), so that the set Vy(f) is
an open domain.

A suitable example is the optimal homing of a liquid-propellant rocket
on a free target in vacuum. Constant engine thrust is assumed, but its
direction can be altered at will. If the differences in gravitational
acceleration on the two objects are ignored, the homing equations relative
to the free target may be written in the form

r=Vv; (1. 16)

V=pa(t),

where r, V are the radius-vector and the velocity vector, ;is the unit
vector in the direction of the thrust (a control element), a(f)is the thrust-
produced acceleration (g_)known function of time). The initial position ry
and the initial velocity V, of the homing rocket are known. The problem
is to minimize the square of the distance to the target r? at the final time
t=t1 .

In tackling problems of this kind, Bellman's method uses a self-evident
optimum principle /1/.

Optimal behavior has the property that, whatever the initial state and the
initial solution, subsequent solutions constifute an optimum in relation to
the state ensured by the original solution. In other words: any component
of an optimal process is an optimal process in relation to the current
(instantaneous) state.

The sought optimal solution and the minimum value of the functional
clearly depend only on the initial time ¢ and the initial state y. We thus
have a scalar function S(¢ y) defining the minimum value of the functional
for given ¢ y, which are treated as the initial values of the problem. In
our example, this scalar function is the square of the minimum distance
to the target at the end of the homing run, assuming that the homing
missile was launched at the time t from point r with velocity V. The
function S(¢, r, V) in our example is thus defined as

St rV)=rm (1.17)

The optimum principle is expressed by the following functional equation:

S (¢, U0)=E2§ [f SOy, u)dt—I—S(T,y‘)], (1.18)

where {u} is the set of the admissible values of the control elements; 7is
some time from the interval {{ {]; y(¢{) is the solution of (I. 3) in the time
interval [f, 1] with the control element u«(f) and the initial conditions {, y;
y-=y(7) is the value of this solution for {=t. Allowing t to go to { and
assuming continuity and differentiability of S(/, y), we readily find the
following partial differential equation:

_gf_-|-inf {"5 F(t, g, )+ FOUL, y,u)}=0, (1. 19)

Oy
ug Vu



with boundary condition (I.17). When this equation is solved, we obtain
the function S(4 y); the optimum control element at any point (£ y) is found
by minimizing the expression in braces.

It is readily seen that in this way we not only find the optimum program
for given initial values fo, yo, but in fact solve a more general problem of
the optimum behavior for any pair of values {, y, treated as the initial
values. This type of solution is known as optimum control

synthesis.
In our particular example, Bellman's equation (1. 19) takes the form

5y Z* V+n£(%;a (t)):O. (L 20)
;

p \ oV

Seeing that a(f) >0 and the scalar product 6_;9 ; is minimum when the
v

unit vector p is antiparallel to a%_s’

;=~0—f/ ‘)—f( (L 21)
ov av
we rewrite (1. 20) in the form
oS | 08 = 28
el A B la(r)zo. (1. 22)
¢ or ov

This is a nonlinear partial differential equation of first order. Hs solution
with boundary condition (1. 17) gives a certain function §(4, r, V). Expression
(1. 21) then defines the field of optimum contro]l elements, i.e., the optimum
direction of the thrust vector for any state {, r, V.

Like the maximum principle, Bellman's equation has its classical
analog — the Hamilton—Jacobi equation of classical mechanics which differs

from (1. 19) in that u is obtained from the condition

S S g w) =0, (1. 23)
u oy
and not by minimizing the expression in braces.

Equation (1. 19) is evidently more general and it essentially coincides
with the Hamilton—Jacobi equation in cases when the given expression attains
its minimum at a unique stationary point.

Both methods — the maximum principle and Bellman's dynamic
programming method — are widely used because they are organically linked
with the particular features of modern applied problems and allow in a
straightforward manner for the physical constraints imposed on the various
elements. A wide range of optimum control problems have been solved by
these methods.

There exists another extensive class of problems (including typical
flight dynamics problems), however, which are very difficult and often
impossible to tackle by these methods.

Let us consider some simple examples of this kind.




Example I.2. Consider the problem of the optimal conditions of the
vertical ascent of a rocket launched from the surface of the Earth, which is
required to reach a given altitude with minimum fuel consumption (or,
equivalently, to reach a maximum altitude with a given fuel charge) /5/.

The equations of motion of the rocket are

h=V; (L 24)
V= — XD g () 4-Pim; (1. 25)
m=__p, (1. 26)

4

Here, 4, V, m are respectively the altitude, the velocity, and the mass
of the rocket; X(h, V)is the drag; g(h)is the gravitational acceleration;
P is the engine thrust, controllable between the limits O0SP<Pp.; ¢ is the
nozzle velocity of the combustion gases (constant). Let ko, Vo, o, fo be the
given initial values of the altitude, the velocity, the mass, and time; Ay, ¢
are the final altitude and time.

A characteristic feature of this problem is the linear dependence of the
right-hand sides of equations (I.24)—(L 26) on the controlled thrust P.

Let us analyze the problem using Pontryagin's maximum principle.

Let

H (oo VumPY= V4t (— e X (V)= ()= ) =4 P,

(1.27)
H oH . oH . oH
Gy = — = —_— _—
O Pyt o o 3 om

be the Hamiltonian and the adjoint system of equations, respectively. The
optimum solution is then selected from among the solutions of the system of
differential equations (I. 24) —(I. 27) closed by the additional relation

H (b, ¥ by, 1,V , m, Py=max H (¥, 4y, ¥, b,V , m, P). (1. 28)
0<P<P

max

The sought solutions should satisfy the following boundary conditions:
for t=4,,
he=hy V=V, m=my;
for t=¢,,
h=h; b () =0; H (41,42, 45 8,V 1, P, =0
$a(t1) > 0.
Let us consider (1. 28) in more detail. Seeing that the function H depends

linearly on the controlled thrust, we readily conclude that depending on the
sign of the coefficient before P (the switching function),



M=1py/m—ys/c, (1.29)

this equation is satisfied by

1) P=P,, for M>0
2)P=0 for M<0 (1. 30)
3) M=0

In case 3, H is evidently independent of P, so that any P may be chosen
from {0, Pmasl-

In our example, case 3 in (I. 30) may be identically satisfied over some
time interval The corresponding solution in the theory of optimal processes
is known as the singular control solution.

The corresponding control function is obtained by making the finite
equation M=0 consistent with system (L. 24)—(1. 27).

Setting the total time derivative of M equal to zero,

M b2 _tem b g (1. 31)

and inserting the right-hand sides of (1. 24)— (1 27) together with the equality
H=0, we obtain a new finite relation, which is independent of P :

N:_I_[X <-‘l/——%>——XV] + E=o0. (1. 32)

Repeating the same operation for (1. 32), we obtain a linear equation for
P, from which the sought control function is found.

The construction of the optimum program generally involves the solution
of a boundary-value problem for (I 24) —(I. 28). As we have seen above,
the rationale of the procedure based on the necessary conditions only is
twofold: first, the existence of the sought optimum program must be
established and, second, the uniqueness of the solution satisfying these
necessary conditions should be proved. The
existence of an optimum program for the
problem being considered (the right-hand
sides of the equations (I. 24)— (1. 26) are
linear functions of the control elements)
follows from the general considerations
of the theory of optimal processes. The
uniqueness of the solution of a boundary-
value problem for a nonlinear system of
differential equations, on the other hand,
is by no means certain. The existence of
singular control markedly aggravates the
situation. Indeed the singular control
program is the set of switching points
M=0, so that at each of these points we
may take both P=0 and P=~Pua
FIGUREL, 1 (Figure L 1).
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Not every trajectory obtained in this way need be consistent with the
boundary conditions, and there are in fact examples showing that there
may be infinitely many such irajectories.

We thus see that complete solution of problems of this kind requires
sufficient or, at least, additional necessary conditions of optimum, which
would enable us to eliminate all the incompatible solutions.

The dynamic programming method in this case leads to a nonlinear
partial differential equation

oS aS 08 1

oS | oS 1

max oo 1 _ 9 1 pl=g

+ [( oV m om ¢ ) ] ’
0sP<P

or
g9S a8 8 1
= B Lxwmv)— h) (MY .
ot on v+ ov< m (hV)—gh) |4 (M=0, (1. 33)
where
MP for M:ﬁ_l-_ﬁL>0’
* (M) = oV m im ¢
0 for M<O0.

No sufficiently general theorems of the existence of solutions for these
equations (with a non-differentiable left-hand part) are available; nor are
there regular methods for their solution (numerical or otherwise).

We are thus faced with a contradiction: in those cases when the
additional necessary and sufficient conditions of optimum are required for
constructive purposes, they are in fact inapplicable. New effective
optimum conditions of singular control thus have to be found.

Example [.3. Let us consider the same problem as in Example 1. 1
with one difference: the engine is not throttled, and it is either on or off
(the thrust P may only take on two values, 0 and Pmax). In this case, as
is readily seen, the equation M=0 is no longer compatible with equations
(I.24) — (1. 27) of the maximum principle, so that the singular control
solution is not included among the allowed solutions of these equations.
However, even if a unique solution has been obtained for the boundary-value
problem of equations (I.24)— (1. 27), we can by no means be certain that
this solution is the optimum, as we do not know that the optimum solution
exists amongthe admissible solutions. The problem is solved inthis caseby
a minimizing sequence, providing a so-called sliding control program. It
will be shown in what follows that a typical solution of this problem is a
succession of thrust programs with infinitely increasing thrust switching
frequency around the line M=0, N=0.

We are thus faced with a new problem of finding appropriate minimizing
sequences.



Problems of this class can be replaced by another problem, for which
the optimum solution is known to exist. However, the minimizing sequence
of the original problem corresponds to the singular control solution of the
new problem, and in the final analysis the sliding control problem reduces
to a singular control problem. Bellman's equation for this problem
precisely coincides with equation (1. 33), with all its consequences.

Example I.4. Suppose that the thrust in Example 1. 2 does not have
a maximum value (this is a typical situation in the mechanics of space
flight). In this case, as is readily seen, both the function H and the left-
hand side of Bellman's equation are infinite for positive M, so that neither
the maximum principle nor the dynamic programming method are
applicable in their original form. Moreover, with arbitrary boundary
conditions, the admissible solutions of the problem do not include the
optimum solution, so that we have to construct a minimizing sequence,
although of a different type: a sequence allowing indefinite growth of the
thrust. This is a typical feature of systems with unbounded linear control
elements. In addition to these fundamental difficulties, there are
difficulties of secondary importance associated with the actual numerical
solution of the problems. This remark primarily applies to Bellman's
method. How are we to solve numerically equation (1.19), say? Consider
the solution by the grid method, when we have to compute the partial
derivatives of the function S(¢/, ¥) at certain tabular points (the function is
known for t=f).

From equation (I.19) we then find the values of 3S/d! at the same tabular
points and approximate to the values of S for {={—A using the equality

S(h—0)=S(t, y) =0t p,

The same procedure is then repeated for S(f-—A, y)., etc., until we
reach f. Consider the case of a midcourse maneuver in space. Then
r, V are three-dimensional vectors, and S(f, r, V) is a function of seven
variables. The numerical grid consists of ten values of each variable for
every t. Itthus comprises 105 points, at which the function S should be
computed and the results stored. Such a tremendous volume of data
cannot be stored in the immediate-access memory of most computers.

And yet, this is a very modest number considering the required
accuracy. If the grid spacing is reduced only by a factor of 2, this number
will increase by a factor of 26= 64, so that even the most optimistic
forecasts of the future development of computers can hardly catch up with
this "growth'. Suppose that equation (I.19) has been solved; it is still not
clear, however, how we are to store and use the solution, which is a
function of seven variables defined by its numerical values. Certain
techniques can be applied in order to reduce this ''curse of dimensionality',
to borrow Bellman's expression, but it cannot be eliminated completely, so
that at the present stage nonlinear problems of third or fourth order
apparently constitute the limit as far as Bellman's method is concerned.

The maximum principle does not lead to such catastrophic effects,
and it is much more powerful and more promising in this respect. In view
of the difficulties involved in the solution of boundary-value problems, we
have to concentrate on developing alternative methods of optimal solution,



which will not require straightforward comparison of all the different
alternatives satisfying the necessary optimality conditions. This is a highly
important and as yet unsolved problem.

A new approach to the solution of the general problem, considered in
the next section, opens new possibilities for overcoming these fundamental
difficulties.

Optimum principle based on a reduction of the
given problem to a trivial problem

Consider the problem of minimizing the functional
t,
I(y(®), u@)=—[ Rt y, ©)dt+P (40, y1) (L. 34)
o

on the set E of pairs of vector functions y(¢), u(f), which differs from the
set D only in that y(f) and u(f{) are not related by differential equations.
This problem will be called a trivial problem. The following almost
obvious optimum conditions apply to this problem. The functional /is
minimized on the set E by the vector functions j(¢), u({) whose values at
every interior point of the segment [f,, ] maximize the integrand R(l, y, u)
over the set V({) and the values at the integration limits #, {, minimize the
function @ (yo, yi) over the set V,(f) 4+ Vy(f):

R(t,y, u)= sup R(, y, w)tCt ty); (1. 35)
(5. WEV (1),
© (%v 1_/1) = inf @ (y, y). (1. 36)
vo €V y(t)
v €V L)

In other words, the problem of minimizing the functional over the set of
functions y(f), u (f), i.e., over an infinite set of numbers, is thus reduced
to finding the maximum of a function R ({, y, u) of n+r variables yi, u* for
every given t& (fo, &) and the minimum of the function ®(y, y;) of 2n
variables.

These conditions, with slight reservations, are generalized to the case
of a minimizing sequence {js(¢), @s(f)}.

This sequence satisfies the conditions

Rt ys, us) > sup R, y, 1), 1C(ty, 1) (1. 37)
(y, w)eV ()
D (ys (&), ysE)—~ inf D (g, yy). (1. 38)
4o€Vy (£0)
y.eVy(h)
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In view of the simplicity of these conditions, it is advisable to reduce
the general variational problem with differential constraints to a trivial
problem, i.e., we have to find the functions R(¢, y, u) and ®(y,, y,) such
that the solution of the trivial problem is also a solution of the original
problem. This is the essence of the variational method considered in this
book.

Let us present, without proof, the basic result on which the variational
principle devolves. The functions R and @ are sought in the following form:

R, y, W)= Dot fi(t, y, )~ FO(t, y, w)+9; (1. 39)
I=1
D (yo, y1)=F (v, v+t y)—s(h, Yo, (1. 40)

where ¢, o, are the partial derivatives of some function ¢(f, y) which is
continuous and differentiable over Vy({) .

Let
p(f)= sup R (¢, y, u); (1. 41)
4.uEV (1)
m= inf D (y, Y1) (1. 42)

Yo EVylia), 9.EV (1)

Theorem 1. 2. Consider a pair of vector functions j(f), @(f) from the
set D and a function @(¢ y), such that

1) Rt 5, u (&) =p(2) (L 43)
2) © [y %), y(t)]=m. (1. 44)

This pair 7(f), & (f) minimizes the functional /. The functions R(¢{, y, u)
and ®(yo, y;) mentioned above thus have the form (I. 39), (L. 40) and are
expressed in terms of the function ¢({, y) of the n+1 arguments f, y¢,
i=1, 2, ..., n, which satisfies the conditions of the theorem.

In 2 more general case, when our problem is to find a minimizing
sequence, Theorem I 2 is formulated in a somewhat different form.

Theorem I.3. Consider a sequence {ys(f), as({)} from D and a
function ¢, such that

1) RIt, ys(®), us(D]—p(@), L€, 1) (1. 45)
2) @ [ys (), ys@&—m; (1. 48)
3) p(¢) is piecewise-continuous and m is a finite number;

4) the sequence Rft, ¥s(f), @s(f)] is bounded.

Then this sequence minimizes the functional [ on the set D. Conditions
1 and 3 may be replaced by a more general, though less obvious, condition

t, 3
SR[[, ys (8), ug(t)] dt — S p () dt. (1. 47)
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The main difficulty associated with the application of this principle is
the definition of the function (i, y) .

The definition of ¢ essentially determines the method of solving the
problem. We will see at a later stage that one of the possible definitions
of @ leads, in particular, to the equations of Pontryagin's maximum
principle as the necessary conditions for the maximum of the function R,
while another method leads to Bellman's equations. These two alternatives,
however, do not exhaust all the different possibilities.

The arbitrariness inherent in the definition of ¢ may be put to work so
as to devise the best procedure for each particular problem.

Let us consider two simple examples which illustrate this point.

Example I.5. Minimize the functional

1
J={ (2—u)dt
Of(y

subject to the constraints
g=u; |u|<1; y(0) =y (1)=0.

Here y and u are scalar functions.
The function R(¥, y, u) has the form

R=gpu—y?+utq. (1.48)

(The function @ is a priori minimized by Theorems 1. 2 —1. 3, since yo, y:
are fixed numbers.) The function ¢ is defined so as to make R independent
of u. To this end, it suffices to take

Py=-—1, (1. 49)

whence

p=—y+C(),

where C(¢) is any differentiable function.
Thus,

R=—y2+C,, (1. 50)

and this function has a maximum for y=0 (with any u ).

Setting 3 (f) =0 in the equation jy=u, we find u#(f) =0 . Since y(¢)
satisfies the boundary conditions, the pair y(f)=0, z(f)=0 is the sought
solution minimizing the functional. Note that we have obtained the
minimizing solution without solving any boundary-value problems.

For comparison, let us consider another definition of ¢, which leads
to Bellman's equation. According to this approach, we find the maximum
of the function R with respect to u for any ¢ and y and set it identically
equal to zero:

supR (¢, y, uY=|¢y+ 1| — 4>+, =0.

Jul<1
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" This is a fairly complicated nonlinear partial differential equation (with
a nondifferentiable left-hand side). The first technique is thus much
simpler.

Example I.5. Under the same constraints, minimize the functional

1
I={ (y2—u?)dt.
|

The function R has the form
R=qyu—y*+u+qr. (1.51)

We take ¢,=0; ¢;=0. The function R, for any f and y , thus has two
maxima, # =—+1. Its maximum with respect to y, as before, corresponds
to y=0. We thus have

g =0; mi(ly=+1; @(t)=—1

It is readily seen that neither of the two solutions maximizing the function
R satisfies the differential equation y=u. However, the existence of three
points at which R has maxima enables us to construct a sequence of
solutions of the equation y=u such that R goes to a maximum for every f,

R(t, gs(t), ds(t)) —p (@) =1

This sequence is constructed as shown in Figure I 2.
Asthethrust switching frequency indefintely
increases (S—o0), wehave ys(f) —0. Forany S
we have l?-’s (t) =1,
Yy Ys(t) This sequence provides conditional sliding
7 solution with zero closeness function y(¢) =0
and basis controls u;,==*1.
The above examples have their own charac-
teristic features, as the previously considered
0 17t problems. In each case, the definition of ¢
}7(1‘,) took into consideration the particular features
2 of the problem, and thus led to an effective
solution of the problem by a method entirely
different from the traditional techniques.

FIGURE L. 2
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Chapter 1
ELEMENTS OF THE THEORY

§ 1.1, STATEMENT OF THE PROBLEM

Our problem is to minimize the functional
t
I={ fo(¢, y, wydt+F(yo, yy) (1.1)
i,

on a set D of the pairs of vector functions y(f), u(¢f) satisfying the following
conditions:

a) The vector function y(#) =[y!(¢), ..., y"(¢)] is defined over the segment
[to, 11]; its components y! (f) (i=1, 2, ..., n) are continuous over [f, {,] and have
a piecewise-continuous derivative; for any fixed t C[t,, #;], the vector y(¢)
belongs to a given region V,(¢) in an n-dimensional vector space.

b) The vector function u(¢) =[ut (£),..., u" (¢)]is defined over [, ¢]; its
components &/ (f) (j=1, 2, ..., r) are continuous everywhere in (&, &),
except for a finite number of points, where they may have discontinuities
of the first kind; for any t¢C (f, 4), y €Vy(f), the vector u(f) belongs to a
given set V(¢ y).

The function F (y,, y,) is continuous for all yo, y1, where

yo=y(t), y1=y(H). (1.2)

The conditions imposed on y(¢) and u(f) define a set V(f) of admissible
values of combinations of n+r numbers (y!, u/) for every ¢t C (f, 1), a region
V, of the admissible values of (¢, y)in the (n+1)-dimensional (f, y) space, and
a set V of admissible combinations of n+r+1numbers (y!, u/, t)

(i=1, 2,..., n, j=1,2,..., r) . In addition to the above conditions, the pair of
vector functions y(f), u(¢) should also satisfy the system of n differential
equations

g=I(t y, u), (1.3)
where f= (fl' f2’ DN} fn)'
The functions i (¢, y, u), {=0,1,...,n, are defined and continuous for all
Ly u.
The vector y= (4!, 42, ..., y") is generally known as the phase vector or
the state vector, and its components are the phase coordinates. The
vector u=(4l, u? ..., u") is known as the control vector, and its components

are the control functions or controls. Formally the phase coordinates
are distinguished from the control functions in that the differential equations
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(1. 3) contain derivatives of the phase coordinates and do not contain
derivatives of the control functions. The sets V() and V,(#) of the
admissible values of Y, y; constitute the boundary conditions.

The argument { may be identified with time, any ascending function,
a phase coordinate, or some other parameter.

The problem is formulated as follows: in the set D of the pairs of
functions y(¢), u(f) find a pair F(f), &(¢), which minimizes (maximizes)
the functional /.

If the set D does not contain such a pair of functions, the problem is
formulated in a slightly different form: find a sequence {js(¢), @s(t)}CD
such that for S-—-oo the functional (1. 1) goes over this sequence to its
lower-bound value on the set D.

The sought pair of functions 7 (f), z(f) will be referred to as the optimum
solution or the absolute minimizing solution, and the sought sequence of
7s(t), #s(f) will be called a minimizing (optimizing) sequence.

We will mainly be concerned with minimizing a given functional. The
problem of maximizing the functional can always be reduced to the
minimization problem by a simple reversal of the functional sign.

§ 1.2, THE SUFFICIENT CONDITIONS OF AN
ABSOLUTE MINIMUM

In this section we will prove a theorem which constitutes the basis for
all the methods of solving the optimization problems described in this book.
First, however, we have to prove one lemma.

Let the functional [ (v) be defined over some set M, v 6 M. Let

inf / (v)=m.
It 7 (2) (1. 4)

Find the absolute minimum of / on M, i.e., find a sequence {75} (M,
such that

lim 7 (vg)=m.
S ) (1.5)

We call this sequence a minimizing sequence and it is said to minimize
the functional / over the set M. If there exists an element 7 € M such that

I{7)=m, (1.8)

we may take vg=% (S=1, 2 ...). In this case the problem reduces to finding
the element 7 € M for which the functional [/ attains its absolute minimum
over the set M.

Consider a set N D Mover which a functional L is defined, so that
L(v)=I(v) for v € M.

Lemma. Consider a sequence {7s}( M satisfying the condition

]imSL (;JS)—:I’ (1.7)

where
I=infL(v) weN.

This sequence minimizes the functional [/ over M:
1(-:08) ~m,

Ssee
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Proof. Let(1.7) hold true. By definition, L(#s)=1/(3s). We will now
show that /=m. If this is not so, then from M ( N we have m>! so that
m—{>e>0. Since {s} ( M, we have /(#s)—I!>efor any S. This, however,
contradicts (1. 7). Hencel=m, and (1.5) follows from (1.7). Q. E.D.

This lemma enables us to replace the problem of minimizing a functional
over a set M by an analogous problem over a larger set N, The "augmented"
problem may prove to be simpler if the structure of the set N is relatively

simple.

Consider a function @ (¢, y) which is continuous for all /, y and has
continuous partial derivatives ¢, ¢y= (¢}, ..., @;") for all¢, y, except a finite
number of sets {=const in the (4, y) space. Now construct the functions

D (yo, y)=F (4o, 41+t y1)—9 (%0 Ho); (1.8)
R(t! Y, u)=(ny(ta Y, u)_fo(t? Y, u)—{—(Pt; (1-9)
p(f)=supR(¢, y, a). (1.10)
(y,)E V(L)

Here @, is ann-dimensional vector function, and the first term on
the right in (1.9) is a scalar product of #-dimensional vectors:

n
"ny:Z cI"’y‘.fl-
i

The vectors y and u on the right in (1.10) are assumed to be independent.

Theorem 1.1. Consider a sequence {ys(f), us(f)} C D. For this
sequence to minimize the functional / over the set D, it is sufficient that
there exists a function ¢(¢ y)such that

1) Rt ys(B), usO—p(t), L€ (L, ) (1.11)
2) D {yos, ) > IF P (g, 41)>—oo. (1.12)
S yo€V y(fo)s 1€V 4 (12 )i

3) u(t)is piecewise-continuous over [fo, £];
4) there exists a finite number Q such that for any S<ecoc and any ¢ (f, #;)

R(t, gs(1), us(t))>Q.

Remark. If the absolute minimizing solution (7 (f), z(¢)) € D exists,
Theorem (1.1) takes the following form. Consider the pair (j(¢), u(f)) ¢ D.
A sufficient condition for the functional (1.1) to attain an absolute minimum
on this pair is the existence of a function ¢(f, y), such that

1) R, y(), u(th=p()) (1.11%)
almost everywhere in (fo, #);
2) D (yo, y))= inf @ (4o, y))- (1.12%)

!/oevy(ta). y,€V u(tl)

Conditions 3 and 4 in this case are satisfied automatically.

Proof. Here the set M of the previous lemma is identified with the
set D of the pairs of vector functions y(¢{), u(¢). The set N is defined as the
set E of the pairs of vector functions y(f), u(f) which differs from D in the
following two respects: first, the functions yf (f), (i=1, 2,...,n) may have
discontinuities of the first kind at a finite number of points of the segment
[to, 4] and, second, the vector functions y(¢), u(f)are not related by
differential equations (1.3). We define the following functional on E:

* Convergence in the measure is implied here: the measure of the set of pointst € (#, f,), where u(f)—Rs>e,
goes to zero for any given e.
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Ly, w(@O)=0 (9o, ) — [ R(E, y(8), u(®)dt. (1.13)

On D we have L=[. Indeed, using (1.3) and (1.9), we get
R=0—/°, (y(t), u(?)) €D, (1.14)

where ¢ is the total derivative of the function ¢ in virtue of (1.3).

Ingerting (1.14) in (1.13) and remembering that y(f{) are continuous
functions for u(#))¢ D, we obtain L=/.

Suppose that there exists a function ¢(f, y) and a sequence {Fs(¢), us(f)} €D
satisfying conditions 1 through 4 of the theorem. We will show that in this
case {ys(t),7s(f) } is a minimizing sequence of the functional L over the set £,
i.e.,

lim L (ys(2), us (£)—1 =0,

where
l=i2fL(y(i), u (1)). (1.15)

Since the functions y(¢) which belong to the set E may have discontinuities,
the first and the secondterms inexpression (1.13) for L are independent.
Therefore

t

= nf © (g y)—sup | R, y (), w(@)at. (1.16)
w,

(¥ YEV y(20) +V (y(21) i

We have

lim L (gs(’f)- u—s(t))— {=lim ® (gos, _!;ls)—
Soroo s

oo
¢,

—inf @ (4o, y)+sup ( R(Z, (o), u(®)dt—

(90 1)V, (L) +V (1) E
1, _
—lm j R (ys(t), us()dt. (1.17)

S f

Using (1.11), (1.12), and Lebesgue's theorem on the limit of an integral,
we write

S~

. - t
lim L (ys (), a5 () —{=sup f R, y(f), u(t)di—
E {

L — —_
—lim j‘/e(t, ys(t), ug(t) di=
S—bwtu
1, £,

=sup [ R(2, y(0), u()dt— | (lim R (ys (8), us (1)) dt=

fo o S+
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¢,

= sup 3 R, y(8), u(®))dt — Sp(t)dt. (1.18)

o

Suppose that our proposition is not true, i.e., the given sequence does
not minimize the function L over £. Then there exists a number €>0 such
that

Lim L{ys (t), us(t)— 1>,

and by (1.18)

t, t,
slé_ptSR(t, y(t), u(t) dt —j‘p(z‘)dt>e_ (1.19)

3

According to the definition of the exact upper bound, there exists a
sequence {y,(¢), 4, (#) } C E such that for a sufficiently large %

t, t,
sp ( R(t, y(0), v at— [Rit yu), mp)dt < . (1.20)
ty iy
Subtracting inequality (1.20) from (1.19), we find

[ Rit, wutt), weenar—{wyat > -,

t,
X[R(t, Ua(D) 2o(B)— sup R(Z, y, w)]dt> = >0. (1.21)
(v, )€ V(L) 2

o

The integrand is non-positive almost everywhere in (f, #), so that the
integral is also non-positive, and inequality (1.19) breaks down.

The sequence {js(f), @s(f)} thus indeed minimizes the functional L over E.

In virtue of our lemma, this sequence also minimizes the functional /
over D. Q. E. D.

§1.3. PROBLEMS WITH A FREE BOUNDARY
So far we treated [f, f;] as a segment with fixed end points. In some
problems, however, ¢ is not fixed and may be chosen from considerations

of optimality.
We again consider the minimum of the functional

I={ f2, y, @) dt+F (g, 4 ). (1.22)
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Here {, is an element of the set T of points of the ! axis contained in the
segment [t,, T}, T<oo. The vector functions y({#), u(f) satisfy all the
conditions listed in §1.1.

The sets V,(f) and V,(f) are assumed to be defined over the segment [f, T].
The function F (¢, Yo. 1) is defined and continuous for # € <, yo € Vy(fo),

y) € Vy(t). Each element of the set D is now a combination of a number
£ € tand the vector functions y(¢) and u(f)defined over the segment [f, £il.

The analog of Theorem 1.1 in this case is formulated as follows.

Theorem 1.2. Consider a sequence {fs ys(¢), ds(¢f)}( D. For this
sequence to minimize the functional I over D, it is sufficient that there
exists a function ¢(¢ y) (see §1.2) such that

1) R(2, ys(d), us(®)—>p (9) (1.23)
on ( to, 713);
2) @ (-tlSv Zo.s% gls‘—* inf D (24, yo, y1)> — 00; (1.24)

1€ T.00€ V) (1) .01 €V y(t))
3) u() =0 on (¢, T);
4) there exists a finite number Q such that for any S<oco and any
te (fo, tls)Z
R(t, ys(t), Bs(8)) >Q,

where R(t, y, u) and u(f) are defined by (1.9), (1.10).

Proof. We define a set E of the triads (f,, y(¢), u(¢)) which differs
from D in two respects: first, the functions y' (¢) (i=1, 2, ..., n) may have
discontinuities of the first kind at a finite number of points of the segment
[to, T] and, second, the vector functions y(f),u(f) are no longer related by
differential equations (1.3). On E we define the functional

Lit, y(®), w(®) = @ (0 4o ) — [ R( g, w)a. (1.25)

Clearly L=/ for (f, y({), u(t)) € D. We will now show that conditions 1
through 4 of the theorem are sufficient for the sequence {fis, Fs(f), #s(f)} to
minimize the functional L over E. In all other respects, the proof coincides
with that to Theorem 1.1,

Let

k(t1)= inf L(tl) y(t)v u (t))y (1-26)
(y(t).u(6))€ E(1,)
where E(f))is the section of the set E for a fixed ¢, i.e., the set of elements
[, y(8), u(t)]1€ E for a fixed {,

b{¢)= inf D (4, Yo, 1); (1.27)
(Vo 82)E V(1) 4V y(21)
m=inf¢(¢). (1.28)
16T

Using (1.26), (1.27), (1.28) and condition 3 of the theorem, we may
write
I=inf L(¢;, y(¢), u()=Iinf k() =info(t)=m. (1.29)
E €1 t€
On the other hand, the limit of the functional L over any sequence
{tis, ys(f), us(t)} € E satisfying the conditions of the theorem is also equal
to m:
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lim L (4, ys(t), #s@)=Um{® (ti5, vos, H15)—
S+

S—+o0

— (R us (0, us(®) dt}= 1m ® (b, g, 1) —
1, It
—tim ("R ys(0), us(0). us(2) at. (1.30)

Since the set T is bounded, we see, using the properties of the sequence
R(¢, ys(f), us(f)), that the second term vanishes. Therefore, using the last
equality together with (1.24), (1.27), (1.28), we find

lim L (fis, ys(8), usE)=m=1,

S0

i.e., the sequence {ts, Fs(t), #s(f)} indeed minimizes the functional L on E.
The rest of the proof is conducted as for Theorem 1. 1.
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Chapter II

SOME METHODS OF SOLUTION OF VARIATIONAL
PROBLEMS USING THE SUFFICIENT CONDITIONS
OF THE ABSOLUTE MINIMUM

In this chapter we consider some methods of solution of variational
problems based on Theorems 1.1 and 1.2; these are methods which show
how to choose the function ¢(¢ y)so as to reduce the treatment to standard
classical methods — Lagrange's method and the Hamilton-Jacobi method —
modifying them to such an extent that a complete solution of the problem
is obtained, i.e., the absolute minimizing solution ig found.

All the results are derived for the case when the minimizing solution
(g(f), a(t)) D exists. A more general case is treated in the next chapter.

§2.1. THE LAGRANGE-PONTRYAGIN METHOD

This method enjoys the widest applicability, although it is not always
the simplest. The underlying idea is to find the partial derivatives of
¢(t, y) at the points of the minimizing solution

vi(t) =@yt 5] i=1,2, ..., n, (2.1)

and also the minimizing solution (j({), @({)) itsclf, while the proof of the
existence of the function (¢, y) satisfying the conditions of Theorem 1.1 is
postponed to a later stage.

For simplicity, let{ be fixed, letV,({) be an open region for allf& (4, {,),
which for f={, and {=/{, reduces to the points

y(fY=yor y) = yy; (2.2)

the setV,is independent of y. In what follows, the functional / is conven-
iently replaced by a functional Yo/, where 1y is a positive constant. This
substitution evidently does not affect the essential features of the problem.
We moreover assume that the functions f/ (¢, Yy, u), (=1,2,...,n, are
continuous and differentiable for all {, y, u. If we further demand that
p (¢, y) be twice continuously differentiable at the points corresponding to
the presumably minimizing solution y(f), we can write the necessary
conditions of a maximum of R in the form
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Ryt (£, y, a)=vutf (4, 1, u) o, for(ty, n)—
— oS g (2, g, @)+ prr=0;
kE=1,2,..., n
oy (f’ ;» E)_%fo(t: ;: E)':
=suple,f(t, y, )~ fO(t, y, u)].

uEVu J

Using (2.1) and the equality f(¢, 7, @) =7, (§(f), Z())€D, we obtain

RoAIE y (8), & (O] = s+ Hyp=0; (2.4)
H It 4(8), y, ul=sup H [¢, (), u], (2.5)
ueVu
where 1 (t):a_“’(l_;_'.‘f’) _ is the gradient of the function ¢(¢, y) at a point
¥ y=ul
y=y () in the space ¥,
H{t y, =¢() F (L. y, u)—WSO(, y. u). (2.6)

Conditions (2.4) and (2.5), together with (1.3), constitute 2a-+r equations
in 2n-+r unknown functions

yre), g, us(t), i=1,2, ...,n;s=1,2,...,r.

Together with boundary conditions (2.2), these equations define an
extremal, i.e., a pair (y(¢), u(f))€ D which satisfies the necessary
conditions (2.3) for the supremum of R{/, y, u), and a vector function ¢ ({) or,
by (2.6), the gradient of the function ¢(/, y) at the points of the extremal.

Conditions (1.3) and (2.4) constitute a system of ordinary differential
equations for the functions 7'(#). ). (f), i=1. 2,..., n, closed by the finite
relation (2.5), according to which for «=u(f} the function H{f, 7(£), $({), u]
reaches its largest value compared to its values for all the admissible
control functions for every fixed {€ (f, fi). FEquations (1.3), (2,4) may be
written in the form

- 9H

=2 (2.7)
- OH
b= 2.8
b ” (2.8)

These equations constitute a so-called Hamiltonian system and
the function H (¢, y, ¢, ) is known as the Hamilton function or the
Hamiltonian.

The variables y! and ¥; and the respective systems (2.7) and (2.8) are
said to be conjugate.

Equations (2.4), {2.5) prove to be not only the necessary conditions for
a maximum of the function R, but also the necessary conditions for a
minimum of the functional, provided the strict inequality y,>0 is replaced
by the weaker condition $>>0. This is so because, after the inequality
adjustment, these equations coincide with the necessary conditions for the
minimum of the functional corresponding to Pontryagin's maximum
principle.
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At all points of the space TXY which are not points of the extremal, the
function ¢(f, y) may be defined quite arbitrarily. If there exists a function
¢(f, y) such that at the points of the extremal y(f), @ (f) both the necessary
and the sufficient conditions for the maximum of R(f, y, u) are satisfied for
every fixed f C(f, ), Theorem 1.1 indicates that the extremal (7(f), 7 ({))
is in fact the absolute minimizing solution. This result can be summarized
by the following theorem.

Theorem 2.1. Let the functions y(f). Z(¢), P (f) constitute a solution of
equations (1.3), (2.4), (2.5). A sufficient condition for the extremal
(7 (), a(f))to be an absolute minimizing solution for the functional (1.1) is the
existence of a function ¢(f, y) which is continuously defined for all
tE [to, 1], y&€ Vy(f) and is twice differentiable with respect to y for all
y€ V, (1), tE [fo, ti] and piecewise-differentiable with respect to f, such that

1) (P!/i [(f¥ y(f)]:l}l‘(f), i= 11 2! ey 1

2) R(l, y, u)= sup R, y, u), t&(ty, 1)

(y.n)ev)

This theorem gives a sufficient condition of the absolute minimum which,
unlike Weierstrass's sufficient condition of variational calculus and its
generalizations /2/, does not require the construction of the field of
extremals nor the derivation of any other extremals except the one being
considered j(f), u(f).

The algorithm of the method reduces to solving a boundary-value
problem for the system of ordinary differential equations (1.3), (2.4), (2.5)
and choosing a function ¢(#, y) which satisfies the conditions of Theorem 2.1
or, more precisely, proving the existence of such a function. This is a
highly significant qualification: it shows that in Lagrange's method we do
not have to determine the particular form of the function ¢(¢, y) satisfying
the conditions of Theorem 2.1, and it is sufficient to prove the existence of
this function only.

In particular, we may start with the expression

et ¥y =wi(t)y +oi;(t) Ay' Ay’ , (2.9)

where
Ayt =y'—g' (1)
and the functions
sl =vsiyl |1, y(©)] (2.10)

are continuous and piecewise-differentiable over {{), ¢,]. Theorem 2.1 then
leads to Corollary 2.1.

Corollary 2.1. For the extremal j({), 7(¢) to be the absolute
minimizing solution of the functional (1.1), it is sufficient that there exist
n? functions oy,(¢) such that

R[t, &(t), o(8), y, u]l=n(?), (2.11)

27



where

R=(p,+5-8y) fit, y, 0)—FL y, w)+
+[% 7 (f>y"+—§;[5u(f)Ay’Ay"]- (2.12)

Example 2.1. Let us apply the above method to investigate the
functional

4
[= | (0?2 — y?)dt,
by (2.13)

y=ru; y(O)=y(t,) - 0.

First let us find an extremal. We have
H = —u?+ 1.
FEquations (2.7), (2.8) are written in the form
QJ: — 2y; ~2/211:
Huu‘_' T 2<0-

If {ys5am (mm=1, 2,...) the unique solution of this system satisfying the
boundary conditions is

y(t) =u(t) = ¢(1)=0, t < ({0, 4). (2.14)
Let
el y) =a()y* 9= 2 oy.
Then
Rt y, u)= quu—12-+ i +¢= (14 0) ¥ +2oyu—u2. (2.15)

For the extremal (2.14) to be an absolute minimizing solution, it is
sufficient that there exists a continuous function ¢(f) such that the quadratic
form - R{f.y, u) be positive definite for every ¢ €(0, ). The necessary and
sufficient condition of this is

“ Ruw= 2200 RyRyy— Rive — 4145240 >0,

The first inequality is satisfied identically, whereas the second imposes

a constraint on o({):
14+a2+0<0; tE(0, 4)). (2.18)

Thus, for the functional (2.13) to attain an absolute minimum on the
extremal (2.14), it is sufficient that there exists a function o(¢) satisfying
(2.16). For example, let {,=1/3. Leta({)=--2{. It is readily seen that

{2.16) is satisfied everywhere on the segment [0, 1/3], so that on this
segment (2.14) is an absolute minimizing solution.
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Let us find the maximal value of f; for which the extremal (2.14) satis-
fies (2.18), i.e., let us find a continuous function ¢ (¢) which satisfies (2.16)
over the maximal interval(0, #;). This function is obtained by solving the
equation

duatio I+02+0=0,
and choosing a solution which is continuous over the maximal interval
(0, t1). The general solution of this equation is

a(t) =—tan(t+c).

A particular solution which is continuous over the maximal interval is
o= — tan(t—}»—?—) .

The continuity interval of this solution is (0, ). Thus for any {, <=, the
extremal (2.14) is the absolute minimizing solution. As we know /7/, the
point {=mx is the conjugate of the point (0, 0) and by Jacobi's necessary
condition there is no minimum on the extremal (2.14) for {;,>mx.

Our sufficient conditions in this case thus coincide with the necessary

conditions "apart from the point £ =xn".

2.1.1. A strong local minimum

We say that the functional [/ has a strong local minimum on the extremal
y(f), u(¢) if there exists >0 such that

TGy, #I<ITy(1), u(h)] (2.17)

for all the pairs (y(f). u())E D, |y(t) —g (1) |<e, everywhere on [f;, 4].
Let ff and f® betwicedifferentiable functions for any £C[f, Hl;
(u. y) €V () and the set V,({) is an open bounded region.
We have the following sufficient conditions for a strong local minimum.
Theorem 2.2. Letthe vector functions j(f), u(f}, (f) constitute a
solution of system (1.3), (2.4), (2.5). Among these functions, u({)is a
strict maximum of H (¢, u) everywhere on [f, 4], i.e.,

H(t, uy<H(t, a), u€E V. (), ustgu, (2.18)

and the matrix I|[—=H_ |5, =1, 2,..., r is positive definite.

Then a sufficient condition for the functional / to have a strong local
minimum on the extremal (j(f), Z(f{)) is the existence of n? continuous
piecewise-differentiable functions ¢;;(f) which on [f,, #] satisfy n differential
inequalities

Avgit, 6(8), o ()10, j=1,2, ..., n (2.19)
Here
_'Eu‘u‘ c e e e . —_R_u‘u’ —}—?u‘y‘ . e . —Téu'yj
ppag| TR e R R Ry (2.20)
—Ry’u'—Ry‘u’-- . —Ry'u'_Ry‘y' oo =Ry
— Ry —Ralur v+« o o o e o =Ryl
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Rysyt= Hysyt,

-ﬁlﬁyf‘—‘“ik]—ct’:“f'ﬁusy’; (2.21)
Do o k. : : :
Ryiyi==oij+toufyi+ ainfui +Hytys;
i, j, k=1,2,...,n 5 t=12,...,r.
(summation over % is implied).
The bar denotes the values of the corresponding functions for y=j(f),

u=g(t).
Remark 2.1. The conditions of the theorem incorporate the conditions
of negative definiteness of the quadratic form

@R [t, y, ul=R,i,jay' 8y + 2Ry tusay' au’+
4 Rusyt Au’au’ (2.22)

for any fixed ¢ €[fy, #;] (summation over repeating indices is implied).
Proof. The function @(f y)is chosen in the form (2.9). Then
R(t, y, u)takes the form (2.12), where the matrix o (f) satisfies inequalities
(2.19).
By (2.1), there exists &>0 such that

R(t, y. w)<R(t, § (), T(£)) (2.23)

for |y—ij|<e, |u—=u|<e, everywhere on (f, t).
Now, by (2.18), we have

R(t, y, u) <R(t, §, @), u CVu(l), usa,
i.e., for all u &V, (¢), with the exception of .
Since R(f, y, u) is continuous, for every fixed ¢ there exists e>0 such
that
Rt y, y<<R (4 y, u) (2.24)

for _
ly— gl <eoy L€V, (¢); o —ul <<yt te(ty, 1))

Let € be the smaller of the two numbers € and €. Then, by (2.24),

R(t, y, u)<R(t g, §);

ly—7 | <e, uCVu(t), ust5, £C (L, 1) (2.25)
and it follows from Theorem 1.1 that the functional / has a strong local
minimum.

Remark 2.2. Theorem 2.2 is formulated assuming an open set
V. . If Vyis a closed region, we have the following analogous
theorem.

Theorem 2.3. Let the vector functions y(f), u(f), ¢ (¢) constitute a
solution of systems (1.3), (2.4), (2.5). Here u(f) is a strict maximum of
H(t, 7, v, u). Then a sufficient condition for a strong local maximum on
the extremal (y(f), ©(f))is the existence of n?continuous piecewise-
differentiable functions o;;(f) and a number >0 such that for all nonzero
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[Ayl<e, lAamd<e

(2.26)
j) i=17 2,-"1 , S:]': 21"-, r; uEVu; fE(tOi tl)
we have the inequality
3 @R, 4, w)+ dRE, §, ©=Rsy+R,(t, Y, @) du+
(2.27)

L Rusut ausnut - 9Rus  awsnyt+ Ryt o) < 0.

Here Ry, R, R, are the coefficients defined by (2.21),
Ay=y—y;
Au=u—u.

Suppose that .a solution o;;(¢{) of the system of differential inequalities
(2.19) has been found and the existence of a strong local minimum on the
extremal (g ({), @(f)) has thus been proved. By Corollary 2.1, the pair
(7(#), w(#)) is the sought solution if the function R(¢, y, u) defined by (2.12)
has an absolute, as well as a local, maximum on V() at the point (7 (¢), #(¢))
for any t € ({o, t).

Note that the proof of the existence of an absolute minimum on the
extremal (j(f), @({)) is often conducted in a straightforward manner, without
first proving the existence of a local minimum. This, in particular, is
the approach used in the following two problems.

2.1.2. Systems linear in the phase coordinates

Let the right-hand sides of equations (1.3) and the integrand in (1.1)
have the form

Ffl=al@®) ' +r¢ w; i j=1,2,..., (2.28)
fo=aj(t) y 0t ). (2.29)
The boundary conditions are fixed:
Yo= Yof; Y1=HY1f.
Equations (2.4) and (2.5) in this case take the form

b+ ajh—aj=0; (2.30)

H* (¢, u)y=y,()a' (t, )—K° (¢, )= sup H'(t u). (2.31)
€V, (1)

Suppose that (7(¢), @ (f), $({)) is a solution of (2.28), (2.30), (2.31). We
will show that the extremal (y(f), #({))is an absolute minimizing solution
of the functional over the set D.
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Let

o(t, y)=v:(t)y', i=1,2, ..., n (2.32)
Then
R(t, y, Wy=(haj+d—af)y +H"(t, )=H"(t, u). (2.33)
Since R(%, y, u)is independent of y, using (2.31) we find for all (& (¢, #)
R(L, 7, E)(fg)uepvl?u()t, g, u)=p(t). (2.34)

Thus by Theorem 1.1 the pair (F(¢{), Z(f)) is the absolute minimizing
solution.

2.1.3. The problem of the minimal mean error

Let the right-hand sides of equations (1.3) have the form

fr=alt)y ~bityu’,

i =1, 8. s=1,2 ., 7, (2.35)
and the function f°(f, y, #)is non-negative and convex on V(£), £ (- (f, ;). This
is generally the final form to which the problem of optimal control of the
perturbed state of a system near some given state y(f) =0 is reduced.
Equations (2.35) are thus the equations of the perturbed state, and the
function (1.1) is a measure of deviation of the system from the given state.

Equations (2.4), (2.5) defining the extremal have the form

b afh — [ =0; (2.36)
H(, g, o), wy= sup H-(t, g(t), 4(¢), w). (2.37)
llEVu([)

Suppose that (j(¢), @(f), ¥ (¢))is a solution of system (2.35)—(2.37). We
will show that the extremal (y(f), 7({))is an absolute minimizing solution.
We take q (¢, y) in the form (2.32). Then

Rt g, w)=(haj+h) 5 405’ — U1, y, ).
The function R({, y, u) for every fixed ¢ is convex and it thus has a single
supremum ¥, & onV({}). Therefore, by Theorem 1.1, the pair(j(!), #({))is
an absolute minimizing solution.

2.1.4. Jacobi's necessary and sufficient condition
of the variational calculus

Using the particular case of a very simple functional, we will establish

a relationship between the conditions of a maximum of the function R and
Jacobi's variational condition of a weak local minimum of a functional.
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Consider the problem of minimizing the functional

£
I={fot, y, u)at; (2.38)
fo
y=u,
Yo, Y1 are given,

where y(f), u(f) are scalar functions, (¢, y, u) is a continuous function
with continuous partial derivatives to third order inclusive.

Let V(f) with ¢ € (4o, ;) be an open domain.
Let the functions ¢(f, y) have continuous partial derivatives with respect

to ¢ and y to third order inclusive.
The function R is written in the form
R(t, y, w)=qu—(t, y, u) +.(t, y). (2.39)
For sup R with respect to y and « to be attained on the pair (y({), a(f)) ED,
it is necessary that

[—eyz‘i"*“ﬁyil‘—?g:(); } (2.40)
Ry=H,=y—fi=0.

Note that conditions (2.40), together with equation (2.38), are equivalent
to Euler's equation (which may be obtained by eliminating ¢ and u between

the appropriate equations).
The next necessary condition of a maximum of R is that the quadratic

form
dZR:I?UIJA.I/Z+‘{Z:EIIUA.[/AM_|'1—:l;uuAu2 (241)

be non-positive; here bars denote the values of the second-order derivatives
corresponding to the pair (j(f), u(?)).
Setting o(f) =@, (¢, ¥({)), we obtain

puu:—f?m([s y, 2)2_72!1'- (2.42)
ﬁyuzﬁ——fgu: (2-43)
Ry =3—Fy- (2.44)

Let y(f)be a continuous function. Then ¢(¢)is also continuous.
A quadratic form is non-positive if and only if the diagonal minors of the

matrix

—Ryy—Ry,
'—I_?y,,—ﬁuu
are non-negative /4/. Using (2. 42), we can thus write
1) fau>0; (2.45)
2) ~fuu(o—F)—(c—Fu) >o0. (2.46)
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The first inequality in (2.45) is Legendre's well-known condition. Let
us consider in some detail condition (2.46): this is a differential inequality
involving the function o(f). Let fg,, >0 everywhere inlf, ¢;]. Note that since

o(t) is quite arbitrary, condition (2.46) can always be satisfied on a
sufficiently small interval ({, %) by an appropriate choice of the initial
conditions o(f) and 6(f). To check whether or not (2.46) is satisfied on the
entire interval (o, 1), we write it in the form of a Riccati equation for the
function o ({):

B G— o)~ (=% = (O Fou, (2.47)

where e({) 20 is some continuous function of {. We know from the theory
of differential equations that the singular points of the solution of (2.47)
(the points where o(f) does not exist) coincide with the zeros of the non-
trivial solution of the second-order homogeneous linear equation

2 (Foud) [ Fou— Tt o] 90, (2.48)

dt

which is obtained from (2.47) by a transformation

c_?guz'% i (2.49)

For £¢=0 equation (2.48) reduces to Jacobi’s equation /2/
d (0 - —~0 d <o
;t_(fuu'v)*(fgy —’nyu)'vzo. (2.50)

Equation (2.48) will be investigated using Sturm's theorem and the
theorem of the alternating zeros of solutions of second-order linear
homogeneous equations. The theorem of the alternating zeros indicates
that the maximal interval (f, #,) on which the solution v(f) of equation (2.48)
does not vanish for a given &(f) corresponds to the solution which satisfies
the initial condition v(4) =0; in other words, it corresponds to a solution
with one of the zeros coinciding with the left-hand end point of (¢, £). Let
this solution be designated v({, fp). Sturm's theorem leads to the following
proposition.

Let v(f) =0 for equation (2.48) for any ¢(f) »0. Then among all the
equations (2.48) with any €¢>0, the maximal interval (fo, f) on which the
solution v (¢, £y) does not vanish corresponds to Jacobi's equation.

In other words, under the above donditions, for e(¢) >0, the next zero
of the solution of {2.48) on the right of {, is no farther from {; than the
corresponding zero of the solution of Jacobi's equation, generally called
the conjugate point of {=#.

Thus, if 72,, >0 and there exists a continuous and differentiable function
o(¢) such that condition (2.46) is satisfied on (fo, t,), the interval (f, £))
contains no points conjugate to 0, this being Jacobi's necessary condition
for a minimum of the functional (2.38).

Conversely, the comparison theorem shows that if (%, {) does not
contain points conjugate to f, there exists a function e(f) >0such that the
solution v ({, f;) of equation (2.48) does not vanish anywhere in (fo, ).

If {,is the conjugate of ¥, we have g¢(f) = 0. Then there exists a
corresponding solution of Riccati's equation or, in other words, a function
o(f)such that (2.46) is satisfied.
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Let us consider the conditions of negative definiteness of the form (2.41),

namely that everywhere inlf, 7], fﬁ,, >0, and on (f, {;) there exists a function
o(f) such that the strengthened condition (2.46) (the strict inequality) is
satisfied or, equivalently, e({)>0on (f, #,) in (2.47) and (2.48). The form
(2.41) is then negative definite., We will show that when these conditions
are satisfied, the segment [fy, {] does not contain points which are conjugate
to tg.

Suppose that this is not so, i.e., f, is the conjugate of # (the interval
(to, t)), as we have seen before, contains no conjugate points) and v(f, fo)
vanishes at ;. Then for any e¢(f)>0 the nearest zero of the solution of
(2.48) is nearer than ¢, lying inside the interval (f, f|). This signifies
that the quadratic form d?R cannot be negative definite, at variance with
the conditions of the theorem.

Conversely, let _72u>0 on [f, t] and let [f, £] contain no points which are
conjugate to ;. Since the solution of Jacobi's equation for v(fy) =0 does
not vanish on the half-open interval [f, £;], there exists §>0 such that the
solution of equation (2.50) does not vanish on (f, {,+8) either.

Because of the continuous dependence of the solutions of linear
differential equations on parameters, there exists a constant £¢>0 such that
the solution of equation (2.48) does not vanish on [f, #] either. Hence it
follows that a function ¢(f) satisfying the strengthened condition (2.46)
exists on (fg, ).

We have thus proved the following theorem.

Theorem 2.4. Considerapair (§({), @(t)) € D, where i(¢) is continuous

and fgu >0 everywhere in [fo, {;]. A necessary and sufficient condition for
the existence of a continuous and continuously differentiable function g(¢)
such that for any fixed (€ (f, f;) the quadratic form

d?R =R AU+ 2R dyAu+ Ry, Ay?

is negative definite is that for the pair j(¢), @(f) the interval (fo, #) (or the
segment [fo, {,]) contains no points conjugate to #.

Thus for a nondegenerate (J9 0) classical Lagrange's problem, the

condition of a non-positive quadratic form

@?R<0; (2.51)
Fe(ty 1))

is equivalent to Jacobi's necessary condition of a weak local minimum, and
the strengthened condition (2.51) is equivalent to Jacobi's strengthened
condition. However, the region of application of condition (2.51) or of its
extended version (2.27) is much wider than of Jacobi's condition: they are
applicable to degenerate problems (when the determinant vanishes,

[H 4, (&7, 2)|=0 ) and to problems with a closed region V,, where

Jacobi's condition does not apply. Note that it is for these problems that

the analysis of the second-order conditions is especially important. They
are needed not only for checking purposes, but are actually used
constructively, since they provide a means for isolating the local minimizing
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solution from the set of all extremals (in these cases, as distinct from the
case of nondegenerate problems, the extremals are not unique).

Example 2.2, As an example of such a problem, let us minimize
the functional

1
I=— |ty
]

. (2.52)
y=u; |u| <1,
y(—D=y(1)=0.
FIGURE 2.1
Conditions (2.4), (2.5) take the form
Y= — ty: (2.53)
H=vbu+ tp=sup H (¢, y, ). (2.54)
lu|<1
The last condition corresponds to three types of control:
+1 for $ >0
u= —1 fo  $<<0 (2.55)

arbitrary within the limits (2|1 for ¢=0.

It is readily seen that conditions (2.52), (2.53), (2.55) are satisfied by an
infinite set of extremals (Figure 2.1), which differ from one another in the
number of control switching points and the number of isolated zeros of the
function (f). The initial segment of each extremal corresponds to the
third control type in (2.55). Indeed, differentiating the identity (f)=0
and inserting (2.53), we find 7 (¢) =0.

To select the absolute minimizing solution from among these extremals,
a more detailed investigation of the maximum of R({, y, u) is required.
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We have
R=py(t, y)ut+ty* +ou(t, y). (2.56)

+

”% .
7

-1

<
«

FIGURE 2.2

Here ¢@(f{, y) is regarded as a thrice differentiable function.

We seek a solution of the problem satisfying the condition of the
fundamental theorem. Such a solution j(#), u(f) should satisfy the con-
dition

R(t g, ) 2R (L y, v) (2.57)

for all (y, u) € G.

Here G is a horizontal strip on the y, u plane between the straight lines
u=*1 (Figure 2.2). For (2.57) to be satisfied on G, it is necessary in
particular for (2.57) to be satisfied on a thin strip G. enclosing the segment
[-1, + 1] of the vertical line y=j inthe (y, u)plane. For those ¢ when
P70, we have u=-+41. The necessary condition for this is

Ruy = pyuy (4 g) 4 2y + 201 yojiny <O,

U= u(t)

or, seeing that §:E, and writing

o {f)—= oy |£, y(ﬂ]
we obtain
Ryy(l, g, 1) =o+ 2t 0. (2.58)

In G. we need only retain the first terms in the expansion of ¢ and R
in powers of Ay=y—y, and we may thus write

o(t, =9, y(1) —I-W)AH—% Ay? -+ o(ay?);
R=(b+ory) utt(y+ayP+i(an+

(@R TO) GO+ 5 (080 .
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We see from the last formula that for =0 the function R(y, #) has a
supremum on G. at the points (g, 1) and (y, —1) for g=0only. Thus, for
condition (2.57) to be satisfied for £ ¢ (—1, +1), it is necessary that there
exists a continuous function o¢(f) satisfying (2.58) which vanishes for those
t when =0, i.e., at the switching points. It follows from (2.58)
that for >0, ¢ increases and consequently there may exist only one f=r,
for which ¢=0, i.e., (2.57) is satisfied only by an extremal containing at
most one switching point with a positive abscissa. The only such
extremal is extremal 2 in Figure 2.1.

Thus, the necessary condition for the existence of o¢(f) for which R has
a maximum in g in a small neighborhood selects a single extremal —
extremal 2 — from among an infinite number of extremals. This extremal
is readily shown to satisfy the conditions of Theorem 1.1. Let ¢ be given

in the form e () _
e{/, y):'lz(f)wa—Q—(y—y(t))?, (2.59)

where () is a continuous function satisfying inequality (2.58) and the
condition o(f{?') =0, g({)=0 for ¢{<t”. Then R is a quadratic form and
satisfies (2.57) for any f{, whence it follows that extremal 2 is an absolute
minimizing solution.

2.1.5. General boundary conditions

1. Let the sets V,({) and V,(#i) be some general sets in the space Y,
and not the points yp and y, as assumed before; { may take values from a
given bounded set t. The function F({, yi, yo) entering (1.1) is continuous
and differentiable. In this case, additional conditions (1.24) of Theorems
2.1 ~2.4 are imposed on the sought minimizing solution ¥(¢), @(f) and the
function ¢(f, y), which demand that the function ®(ys, yi, {;) have a minimum
for yo=yo, y1=y1, ti=1; and that p({)=0.

A necessary condition for a minimum of ®(#, y;, yo) at the point
i1, Jo. J1 is provided by the inequality

p b )
X a2 a2 aty >0 (2.80)
Jyo A1 0t

for all
HET, o CVy(h) g€V, (),
where Ayosyo—%; Ay =1y, ——;1; Aflztl—fl are all sufficiently small (the

bar denotes the values of the derivatives for y;=f;, Hi=1F1).
Using (1.8), we write (2.60) in a more explicit form:

oF — oF -
[—0 — ¢y (fo, !/o)] Alo Jr[*% oy (f1, yl)] Ay +
Yo dy1

oF -
+ [a—tx-_} ¢ (1, yl)] Aty 2> 0.
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Using the notation from (2.1) and (2.6), and seeing that in virtue of the
identity u(f)=0

(Y B) o 09 g ) £ T oy
Y J o Ft, g, n)

= —H(t y(t), $(t), u(®),

we finally obtain
[—:F —¢ (fo)] Ayot [—*SF +¢ (?1)] Ay +
Y0 Y1

oF - -
+[: dtl —H (tly Y1 u(tl))letl>O
for all

HET, meVyh): Y€ V(). (2.61)

This inequality, together with the conditions g€ Vy(f), y; €Vy(f) and
t€r, specifies 2n+1 boundary conditions for the system of differential
equations (1.3), (2.4), (2.5) and a finite value of the argument f.

These boundary conditions can be written in a more concrete form if
the particular sets t, Vy,(#), and V,(/;) are defined explicitly.

In our previous example, when the sets were identified with fixed points
in space, inequality (2.60) did not impose any constraints on the vectors
P(fo), P(£), since

Ay0=Ay1=At1=0

Another common type of boundary conditions corresponds to the following
case: Yo is a fixed point, the set V,(#) coincides with the entire space Y,
i.e., there are no constraints on y,;, and the set t corresponds to the
semi-infinite interval (f,, o©). In this case, for inequality (2.60) to be
satisfied, the coefficients before Ay, and Af, must vanish, i.e.,

4’(’1)3—‘(%‘?; (2.62)
H, yt), u (/1))=—gt—'_j . (2.83)

These equalities define the n+1 missing boundary conditions for the
system (1.3), (2.4) and the time f,.

When investigating the sufficient conditions for a minimum, the condition
of a minimum of ®(y, Y1, {;) imposes additional boundary conditions on the
differential inequalities for the functions o0y;(f{). They may be derived from
the inequality

1 b 0P 4%
d® 4 — d2d = — A el 7 Af
+ 5 E y0+dy1 Ay + ot At 4

1 926 K j 928 i j
—f——(—AyoAto 2 —— AyoA
2 aylogg 190000 T2 5y Au0by
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L i o0 1
9252 Ayiat, 9292 s iat
+ aylot, % i+ aylor, Y1 1

a92d
9y} 0y{

Lyl 020 )iy
+ Ayiayl + W(A 1) )>0, (2.64)

which should be satisfied for all sufficiently small non-zero increments
Aye, Ayy, Aty when

HET, Y€ Vy(ly)i 1€V
Here

ob oF
= )+
%0 b (b)) + P
b oF
= )
Oy, oy

od oF — -
a—:l:o_t,KH &, y(h), a(t))
A7 33F
— == g (f):
dyndyh  Auidyl il
o
dyodyl Ayydu]’
9 IF
Oyéﬁtl *0y6311 '
2L d2F g
Tt~ aytar, T —ou(t) ¢ (1);
0% oF

ayi ay{ - ayf()y{'+ Sij (/1)2

2 RF =
=l ] g.: 4 ].
o oy 1 bt o'y

Summation over repeating indices is assumed throughout.
For the previously considered particular case -- the problem with a free

right-hand end point — inequality (2.64) is equivalent to the condition of
positive definiteness of the quadratic form

L N 070 : %% )
auTou] MBI 25, Top, BYIAN T g (AT
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2.1. 6. Numerical aspects

Lagrange's method thus reduces the variational problem to finding the
extremal (j(¢), Z(¢))and a vector function (f), i.e., to solving a system of
ordinary differential equations of order 2rn with boundary conditions (2.61),
followed by verifying the sufficient conditions of optimality on this extremal,
e.g., by solving the differential inequalities (2.19) for the functions oy;(f).

It is significant that the boundary conditions are separated, i.e., some
of them correspond to the value f of the argument, while the remaining
boundary conditions correspond to #. The result is a boundary-value
problem, as distinct from the Cauchy problem, when all the boundary
conditions are specified for the same value of the argument, % or f,. The
majority of the modern computation algorithms solve a given boundary-
value problem by constructing a sequence of solutions of Cauchy problems
obtained by varying the missing initial conditions until the required final
conditions are satisfied.

Let us consider the actual procedure for solving the Cauchy problem
for system (1.3), (2.4) by Euler's polygonal method. According to this
method, the segment [fo, #;] is divided into s parts by the points
Ti=1ly, Ta>T1, T3>To ... Ts=k. Given y(f). ¥(f), we find #(f) from the
condition of the maximum of the function H (¢, y(f), ¢ (). u)and, inserting the
result on the right in (1.3), (2.4), we obtain g(4) and {P(%). The finite-
difference formulas of Euler's method

y(T)=y () + 4 () (. —1y);
P (t)=19(%)+ 4;(fo) (to—1y)

are then applied to determine y(12) and ¥(v;). Reiterating the procedure,
we find

g (), p{(Ta). . ..y (f), $(8).

In solving the boundary-value problem, this procedure is repeated for
various values of y(f), (l) until y(4), p(f1), {1 satisfy the final conditions
with sufficient accuracy.

This explains why the solution of boundary-value problems is so time
consuming, even with modern computers.

Various methods exist which cut down the search for the initial values
y(to), P (fo) and often markedly reduce the volume of computation. These
improved methods include Newton's method /3/, the method of fastest
descent /9/, random access methods /5/. However, even with these
methods, the solution of Boundary-value problems involves significant
difficulties, especially as none of them is absolutely reliable.

It should be emphasized that despite all the efforts, the extremal ob-
tained in this way may prove not to be the sought minimizing solution,
since equations (1.3), (2.4), (2.5) only give the necessary conditions for a
maximum of R.

No adequate algorithms are avajlable so far which would enable us to
tackle the second part of the problem, namely the verification of the
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sufficient conditions. In a number of cases, this problem is solved
relatively simply by choosing an appropriate function ¢, as in 2.1.2 and
2.1.3 above. In other cases, the solution can be simplified by using
inequalities (2.19) for oi;(f).

§ 2.2, HAMILTON—JACOBI-BELLMAN METHOD,
OPTIMAL CONTROL SYNTHESIS

In the present treatment, we choose a fixed f, and make V() coincide
with the entire space Y for € (f, ;] and with the point y=yo for f=/lo;
F(y1, yo) is independent of yo .

We construct the function

P(t,y)= sup R(, y, u) (2.65)

uEVu(l,y)

and try to select ¢({ y) so that P is independent of y, i.e.,

Pty = uggp(t.y[?yf(t,y,u)—f"(f,y,u)H ¢ =C(0), (2.66)

where C({) is an arbitrary piecewise-continuous function.
Then P (¢ y)=w(¢) at any point of the space Y . Let #(f Y) be the value
of u for which R({, y, u )attainsa supremum at the point £ vy, i.e.,

R(t, y, w)=P(¢ y) (2.67)
and let 7 (f) be the solution of the system
g=Ilt, g, (¢, y)] (2.68)

with the boundary condition y(0) =y,; also let u(f)=u(f 7(f)). The pair of
vector functions (y(#), u(f)) belongs to the class D and satisfies condition 1
of Theorem 1.1. For this pair to satisfy condition 2 of this theorem, i.e.,
to be an absolute minimizing solution, it suffices to take

F(y)+o(t, y) =const, (2.69)

i. e., it is sufficient that for {={; the function F+¢ be independent of y .
Thus, if the function @{f{, y¥) can be selected so that sup R is independent of
u

Yy, or more precisely, if we can solve the partial differential equation
(2.66) with the boundary condition (2.69), our problem is completely solved.
Moreover, a much more general problem is solved, namely how, starting
from any given state (fo, Y0) EV, to reach the least value of the functional
(1.1) in a time 4. To accomplish this, at every paint (4, y), starting with
(to, Yo), we choose a control function @ (¢, y). If @(f, y) is known, u(f, y)is
obtained from (2.66). The function 7({)is then found from (2.68).

Using the terminology of the automatic control theory, we refer to the
solution of the variational problem constructed in this way as the
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optimal control synthesis, and to the field #(f y) as the
synthesizing function. In distinction from synthesis, the optimal
control function u(f) corresponding to the given initial conditions (o, ¥o)
is called the optimal control program.

These two forms of solution of the problem correspond to two fundamen-
tally different methods of practical optimal control. The synthesis solution
is implemented by a closed automatic control system (a feedback system).
In this system, the synthesizing function is regarded as an algorithm which
determines the response of the feedback operator to the signals from the
sensor elements measuring the time and the current state of the controlled
object (Figure 2.3).

The control program solution is implemented by an open system, without
feedback, as shown in Figure 2.4.

Controlled object y
Jf(ty,n)
17
t _ -
[ieedback = 4(t) | Conwolled object | F(L)
u(t,y) - Y=f(t,y.u) -
FIGURE 2.3 FIGURE 2.4

The method described above is in fact the Jacobi-Hamilton method
whereby variational problems are reduced to partial differential equations.
Equation (2.66), apart from the arbitrary function C(f), coincides with
Bellman's equation /1/.

Bellman's equation is thus obtained as a particular case from
Theorem 1.1 with a function ¢@(f, y) of special form. At the same time,
this equation constitutes a sufficient condition of an absolute minimum.

2.2.1. Optimal control synthesis for systems linear in
the phase coordinates

Let the right-hand sides of equations (1.3) and the integrand in (1.1) have
the form

n

fr=2 ak(t)y'+rr(tu) (i k=1,2,..., n);
1=1 '

i (2.70)
Jo=2ad(e) g + 404, ),

or in vector notation
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f=A(t)y+h(t, u); P=a®()y+h°(4, u), (2.71)

where A(f)=|la || is the matrix of the coefficients (i, k=1,2,..., n). The
set Vi is assumed to depend on £ alone.

Our object is again to minimize the functional (1.1). The conditions on
Vy(f) are the same as in the previous section. Let

Fly)=My, (2.72)

n
where k={A;},,...,},) is a given r-dimensional vector; )\y=2 Nyt is the
i=1
scalar product of the vectors X and y .
Inserting (2.71) in (1.9), we obtain

R(t, g, u) = (A*@u—a®)y+ou(t, §) +ouh(f, u) —h0(, u),
where A*is the transpose of matrix A, i.e., A*=|lal].
Now from (2.66)

Pt, Y)=(A%ey—ay+o+H({ )
H(¢, y)=65u1(>l) loyh (2, u)—hO(¢, w)]. (2.73)

In order to satisfy equation (2.66), we have to choose @({, y) so that the
function P is independent of y.
We seek ¢ in the form

=y (). (2.74)

Inserting (2.74) in (2.73), we find

P=(b+ A*p—a®)y-+z2(2); (2.75)
F ()= sup [p(OR(E, 0)—h°(¢, u)]. (2.75a)
wt Vv, (6
The vector function ¥ (f) is defined by the equations

b+ AT (He=a® () } (2.76)
b(t)=—X\

The function P (¢, y)=2¢ () is then independent of y and ®(y) =Ary--
+p(4)y=0, i.e., conditions (2.66) and (2.69) imposed on ¢(f, y) are
satisfied. The search for the function ¢(f, y) is thus reduced to the
solution of a Cauchy problem for a system of linear differential equations
(2.76) with initial conditions (2.69). If 4 and a° are independent of £,
equations (2.76) are integrable in a closed form., Given the vector ¥ (f),
we find the optimal control function u(f) from equation (2.76), which in this
case has the form

V() a(t, B)—hO(t, B) =5 (1).



Let
h* =b*u (k=0,1, ..., n),

where # is a scalar (i.e., r=1) constrained by the inequality |u|<!, b%(¢f)
are continuous functions on [f5, #i]. We have

& (¢) =sup [ () b—b"lu=p(£) b—b°].

lul<l

Here b=(b%,b%...,6"). We have

a(f)=1for all ¢ when ¢ ({)6—5b°>0;
U(f)=—1 for all ¢ when $({)b—b°<0.

The equation
P () b—0b2=0

defines the set of ''switching points."

The problem of the optimal approach to the hyperplane ¢{=#f from any
position y, is thus completely solved for the particular case when
f{(i=0, 1, ..., n) are linear functions of the phase coordinates.

2.2.2. Algorithmic features of the method

The Hamilton-Jacobi method reduces the variational problem to the
solution of a Cauchy problem for a second-order partial differential
equation for the function @({ y). This problem has a number of charac-
teristic features. Equation (2.66) contains only the partial derivatives @y
and ¢@;, and does not contain the function ¢ itself. All the partial
derivatives, except ¢;, enter the equation nonlinearly, because of the
nonlinear operation of the supremum over u . Equation (2.86) is always
solvable for the partial derivative ¢:; the boundary conditions are
defined on the hyperplane f=f, in the ({, y) space. Because of the
last two factors, the argument [ occupies a preferential position among
the n+1 arguments of the function ¢ and makes it possible to construct the
solution of the problem in the direction of decreasing ¢, starting with ;.

The solution algorithm, unlike that of the Lagrange's method, is thus
independent of the boundary-value problem. This is one of the principal
advantages of the method. Another advantage is that the solution of the
partial differential equation (2.66) completely exhausts the solution of the
variational problem: any pair (y(f), u(f)) constructed by this method is
the absolute minimizing solution, whereas in Lagrange's method the
solution of the boundary-value problem for the corresponding system of
differential equations only constitutes the first step toward the solution of
the problem, as it remains to verify whether or not the extremal obtained
in this way is indeed the absolute minimizing solution. Finally, an obvious
advantage of the method is that it solves the optimal synthesis problem,
which constitutes a much more general problem than the simple search for
a single pair (7(£), u(¢)).
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The greater generality of the result, however, is an outcome of the
greater complexity of the algorithm: instead of a system of ordinary
differential equations, as in Lagrange's method, we are dealing with a
partial differential equation (2.66). No regular numerical methods are
available for such an equation. Moreover, no existence theorems for the
solutions of equations of this type are known either.

It is therefore desirable to develop suitable methods for approximate
optimal synthesis. A general approach to this task and one of the particular
schemes are described in the next section.

A shortcoming of this method compared to Lagrange's method is that its
application is more restricted. It is not by chance that it is described in
reference to a particular class of problems, the so-called problems with a
free right end point.

However, numerous problems with a set Vyof a different structure may
be approximately reduced to this particular problem by an appropriate
modification of the functional. For example, problems with a fixed right
end point (fixed gy, ) for a functional / are readily reduced to problems with
a free right end point for the functional

4% (‘Ji—yff)?’

where yi are the fixed values, y!, A, are sufficiently large positive numbers.

§2.3. THE METHOD OF APPROXIMATE OPTIMAL
CONTROL SYNTHESIS

2.3.1. Statement of the problem

In virtue of the equations
y=f(t y, u) (2.77)

the value of the functional

1={ fo(t, y, wai4 F(y) (2.78)

is given if the initial point (f, yo) and the control program u(f) on [fo, #]
are given. Let

d(ty,y9)= inf 1]y, yo, u(£)], (2.79)
{« (O}
where {u(f)} is the set of all the admissible control functions on [f, #].
A function u(f)is considered admissible if there exists a function y({)
such that the pair (y(¢), u(f)) €D. The latter relation implies that the
solution of the system of equations

g=f(t y, u(®)), y(t) =yo (2.80)
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for all {C [fo, t,] belongs to V,(f) and u(f) EVL (4 y(f)). It is assumed that
{u(t)} is not empty. In virtue of the definition of a lower bound, there
exists a sequence

{#a ()} C{u(8)},
such that
I [to, Yo, ta (£))—d (to, yo) for a—oo.

For every fixed initial point (f, y), we have to select such a sequence
from a certain given set Vyo in the space ({, y). In other words, we have to
solve the previously stated problem for all % and yo€Vy,.

Let fomm be the minimal #, corresponding to the set Vyo.

The set Vy(#), ¢ €[ty, #1], in each of the resulting problems is defined as
follows: each ¢ E€[fomm, {i] is assigned to a set Vy(f) and it is assumed that

Vy(to) =40 EVyi (fo);
Vy (t) = Vy] (t) for ¢ 6 (to, tl]

Our problem is solved once we have constructed a minimizing sequence
of synthesizing functions u.(f, y) ¢ Eomm, 1}, yEV, (). A sequence u. (I, y)
of synthesizing functions is said to be a minimizing sequence if the sequence
of the control functions

ua(to, Yo, 1) =ua [f, Fa(D)]

belongs to the set of admissible control functions and constitutes a
minimizing sequence for any f, Y &Vy. Here F. (f) is the solution of
system (2.80) with the initial conditions y(f) =yo for u=ua.(f y).

The problem is finally stated in the following form: in a region Vyo of
the ( n+1)-dimensional space (¢, y), construct a minimizing sequence of control
fields {u. (¢, y)} for the functional (2.78).

Every element of this sequence will be called an approximate optimal
synthesis. The degree of approximation will be measured by the number
.= sup [I([o‘ Yo, Ua (tO‘ Yo, f)]—d(fm yO)

(f0.40)€ Vg

Evidently, a. —0 for a—o0. .

The following theorem enables us to estimate the accuracy of the
synthesis without solving equation (2.65).

Consider a function E(t, y) which is continuous and differentiable for
t¢ [fomm, 1], yC Vyi (). Given (¢, y), we can construct the function

R(t,y)=9,(t,y) f (t,y,0)— f°(t,y,1) 4@ (2.81)

Let @ (¢, y) be the control function for which 13 attains its maximum
value on Vu(¢, y), i.e.,

Rt.yu(ty)= sup R(tyu)=P(ty) (2.82)
u €V, (t.y)
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D (y)=F () +¢(t1) ] (2.83)

y €V (4

§(f, to, Yo)is the solution of the system

y=7(tyu(t,y), yt)="yo
and (2.84)
u(t o, yg) =1 (¢,y (¢, {0, 50))-
Let for all (fo, yo)GVyo and te (f(), tl)
y(t to, o) € Vy(h).
Let fur‘ther
A—S e Pw— ol Pyt s S o B, (2.85)
yEV 1) vE€ Vyhs) YEV (L)

H
0 min
Theorem. The funct10na1 (2.78) over the field of control functions
# (¢, y) satisfies the following estimate:
|7 [f0,50,8 (] — d (4, 90)) < 3 (1) < A (2.86)

Here a{{)=a(f, §(¢)), F(i) is the solution of (2.80) for u=u(t, y).
Proof. Consider the functional

L=§ Rty y)uldt —e(y0) + ¢ Ly + F(4), (2.87)

defined over the set E of the independent pairs of vector functions (y(¢), u(?)).
This functional has the following property: on the set D ( E of the pairs

(y(£), u(¥)) satisfying equations (2.80), L=/ for any ¢({ y).
Let
Liy("u ()= LIy @ ()% ,0)] (2.88)
= inf  L[y@®)u)]. (2.89)
(W) u(t) EE
We have
1
I~ — [ dwai+etng)+m, (2.90)
fo
where
p(t)—— ;up R[t y, u]= sup P[t, y]. (2.91)
_I/EV_/‘

Seeing that
’k[f, :l;, ;(t)]:ﬁ[[v .’/N]v
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and using (2.85), (2.87), and (2.90), we obtain

Iy an—-I< S[—P(z (o) e at+ (g —m <A (2.92)
Since
(G0, Z(@)eD
we have
LIy, 2O1=1 [ty ()],
and thus

Since D ( E, we see that d(fo, yo) > and, using (2.93), we find

|7 [1, 40,2 ()] — d (fo, y0) | < & (2.94)
Q. E.D.
Corollary. Consider a sequence ¢, ({, y) such that
A, =A{p. )} —0 (2.95)

for a—oo . The sequence of the control fields i, (¢, y) is then a minimizing
sequence.

If a particular construction of the sequence @a(f, y) satisfying (2.95) is
given and the paths y.(f) corresponding to ¢.(f, y) are seen, in virtue of
(2.80), (2.82), and (2.83), to satisfy the condition

Ya(t, to, yo) EVy () for i€ [k, til, (fo, yo) € Vy(to),

the corollary implies that a regular algorithm for the construction of the
control synthesis %« (f, y) is also given, which for sufficiently large o is as
close as we desire to the optimum control synthesis. Moreover, the
theorem provides a specific estimate (2.94) of the closeness of the synthesis
u. (¢, y)to the optimal synthesis.

In practice, the proposed method of construction of the minimizing
sequence uU.(f, y) is implemented as follows: the sequence @.(f ¥) is
constructed so that A. —0 for a —oco, and condition (2.94) is verified a
posteriori, after the construction of the synthesis u,(f, y) . For this
method of solution to be successful, the set V, (f) should correspond to a
sufficiently large region of the space Y. Also note that if the set Vy(¢)
in the initial statement of the problem coincides with the entire space Y,
it should be replaced by a bounded region to permit searching for the
supremum in (2.91) in practice. Vy(f)should remain sufficiently large so
that condition (2.94) is satisfied.

Remark. The construction of the sequence . (f, y) satisfying (2.95)
may be considered as an approximate method of solution of the partial
differential equation (2.82), if @.(¢, y} is convergent in some norm. In our
formulation, however, the question of the convergence of @.(f, y) does not
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arise. The sequence 9«(f y), and hence #(f, y¥), may have no limit. The
only requirement is that (2.95) be satisfied by the exact solution and that
A. be sufficiently small for some o when the solution is approximate.

2.3.2. Construction of a minimizing sequence

As a particular example of the construction of a minimizing sequence,
consider the following technique. @.(f, y)is defined as a polynomial with
known coefficients ¥ (I):

1y Iy In
()= () <E () ( o 3 b, @) ). (2.96)
i,=0 1,=0 o

Expression (2.96) for @. contains a=I[;-l; ... [, arbitrary continuous
functions Pu,1,..1, () which are selected so as to minimize A. in some way.
To this end, we define N supporting curves y=yp ({) which are arranged
in Vy(f) for each f in the following manner. The range of each variable
y! corresponding to Vy(f) is partitioned into segments by laying off [,
points on the y! axis, [ points on the y? axis, etc. Hyperplanes
perpendicular to the corresponding axes are passed through these planes.
The intersections of all these hyperplanes give N=I-l, ... [, tabular
points. Repeating the same construction for every time (¢ and ensuring
continuous time-variation of the coordinates of the tabular points, we
obtain a family of supportingcurves y=ys({). In practice, the construction
of supporting curves should make use of families of curves which have a
convenient analytical description, such as the family of straight lines
y(8)=At+A,, the family of parabolas y=A,12+Ast+ Ay, the family of
polygonal lines, etc.

Inserting the expression for . (¢, y) in (2.82) and demanding that (2.82)
and (2.83) are satisfied on the supporting curves only, we obtain the following
system of differential equations and boundary conditions for the functions

¥ ()

> () (Z' ()" ( 5 L fn<f><ys)’")):

i,=0 i,=0 in=0
=K(f)—~¢%’(f,yp,<{>y(f,yp)); (2-97)
D (yp (t)= F[ljﬁ(tl)]‘}"?(fhyﬁ t)=K,, (2.98)

B=0, 1y, Lo, ly=N.

Here o(¢{, y) is defined by (2.96), and ¢, (& y) is the partial derivative
of (2.96) with respect to y'.

From the point of view of numerical work, the arbitrary function of
time K(¢) and the constant K; are conveniently set equal to zero, K(!)=0,
K, = 0. The number of equations (2.97) then coincides with the number of
reference curves. System (2.97) comprises N first-order linear ordinary
differential equations in the unknown functions ¢(f). The functions y;(t)
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entering the coefficients are known. We recall that the subscript B
identifies a given vector function y3(f), and the superscript { specifies the
particular component of this vector function. The initial conditions for
(2.97) are defined by a system of N linear algebraic equations in N unknown
functions P(f;). The problem of solving (2.97) for the derivatives is
equivalent to the problem of interpolation of the function — (¢, ¥, ¢,), defined
by its values on the supporting curves using the polynomial (2.96). Similar-
1y, the problem of solving (2.97) is equivalent to the interpolation of the
function [—F (41, #1)] defined by its values at the points y{ ({) using the
polynomial (2.96).

Our algorithm is built to cope with these problems, since, as can be
shown, they are reduced to the solution of a series of one-dimensional
interpolation problems using polynomials of degree [+l ..., {n or, in other
words, to the solution of a system of linear algebraic equations of order
I, &, ..., I with non-degenerate matrices (Vandermonde matrices).

The solution of (2.87) with the appropriate boundary conditions yields
the functions ¥s({), which define (4 y) and hence the approximate control
synthesis @(f, y). The synthesis #(f, y) obtained in this way evidently
satisfies the estimate (2.94).

In particular problems, to evaluate the estimate (2.95), it is often
convenient to supplement the integration of (2.97) for (fo. /1) by a simul-
taneous solution of the equation

E= sup P, y)— inf P,y (2.99)
)

4V Y EV

with the following initial condition for f=f, :

t)= sup ®— inf .
S HL-V,J[()r,) yEV (I (2.100)

Evidently,
A=E({y).

In the majority of publications on many-dimensional interpolation, the
interpolation polynomial is given explicitly or implicitly in the form (2.986),
and the reference points are arranged as described above. In /10/, the
interpolation problem is solved in general form and general expressions
for the polynomial coefficients are given. These expressions, however,
are very unwieldy and it is not clear to what extent they will be useful in
practical numerical work on computers and how favorably they will compare
with information given in the original implicit form by equations (2.97).

In numerical solution of (2.97), the derivatives should be determined at
every step from explicit and implicit expressions. The number of steps
should be sufficiently large. The example that follows shows that a slight
modification of the original equations may enable us to choose the reference
curves so that the elements of the coefficient matrix of (2.97) are either
constants or simple functions of time; the elements of the corresponding
inverse matrix can be determined beforehand, in the form of constants or
simple functions of time. In this case, the determination of the derivatives
at each step involves computations using fairly simple formulae. Since

the matrix inversion is performed only once and thus hardly affects the
total computer time, the exact form in which the original information about
the function (f) is specified is of no particular consequence.
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Let us summarize. We described an algorithm for the approximate
construction of an optimal control field u. (¢, ¥). An estimate of the
closeness of the approximate synthesis T (, y) to the optimal synthesis is
given by expression (2.94).

The algorithm comprises the following stages.

1. a reference curves yp (f) are defined, i.e., a points in a region
V,(t:) of the space Y for every fixed tClty, 4].

2. The Cauchy problem is solved for system (2.97) of ordinary
differential equations with initial conditions (2.98). System (2.97) should be
solved numerically in the direction from 4 to fomm. While constructing the
right-hand sides of (2.97), we determine the synthesizing function &. (¢, y)

from (2.82).

3. The number A. is computed from (2.95) and inequality (2.86) is then
applied to determine the closeness of the synthesis %a (¢ y) to the optimal
synthesis. If the result is insufficiently close, a larger a is selected and

the procedure is reiterated.
Example 1. Construct the optimal synthesis for the system y=u in
the region {<{ of the {, y plane from the condition of minimum of the

functional
£
1={ warrg2(e), 2>0. (2.101)
£

Because of the increment Ay2, the functional falls in a sufficiently small
neighborhood of y(f)=0 for sufficiently large L. We have

Rty u)=pu—u+o; u(t,y)="l2,{ty)
Pty =swpR(t.ym)="lse; 45 (Ey.9)="1:%

The function F(y)=Ay? is a quadratic polynomial, and the least number
o for which (2.98) may be satisfied is therefore a=2. Let us now construct
an approximate synthesis uy(f, y). We have

@2 ()=, (£) y 4 (£) 4%
% o= ()4 20(8) .

The curves y=y; ({) (=1, 2) are chosen as the straight lines
N=0; yo,s=x1.
1. System (2.97) has the form
. . 1 1
Bt [+ 20— $1=0;
(2.102)
. . 1 1
—$itdt o (=20~ $=0
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or
b 92=0; bt +b+ 3 =0.
The boundary conditions (2.98) have the form
Y1 (41) =0; 2 (£1) =—A. (2.103)
The solution of system (2.102), (2.103) is

WO=0 GH=— -

H+Ip—t
Further,
[;Z ¢ (f,y)= _tlg—i-%——t H
ap(ty)=— o ly/m (2.104)

Check the closeness of uy(f, y) to the optimal synthesis:
1 . .
Pa(t.y)=— (2P + by =4 Fa] y? =0, (2.105)

i.e., the second approximation coincides with the exact solution.
Example 2. Construct a synthesis for the system

g=u jui<i (2.1086)

in the region 0<(<0.5, |y|<1 of the ({, y) plane which will be optimal in
terms of ensuring minimum deviation from zero of the coordinate y in the
measure

We have

Rt yu)=vu—y* fop } (2.107)
u(t,y)=signe,;

Pt,yy=|9y|—v* +¢s } (2.108)
F(t ey =]py| — 2.

First approximation:
Pi(t, y) = (D) y.

Let ys () = =1, p=1, 2.
System (2.97) is written in the form
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and the initial condition (2.98) takes the form ¥ (#;)=0. We have

() =0; Pi(ty)=—y%
0.5

0.5
a=| lsuppl(w—infp(y)ldt:d{ dt—0.5. (2.109)
]

Any control function u(¢, y) is possible by (2.108). The first approxi-
mation in this case thus does not produce a synthesis. Estimate (2.109) in
this case indicates that for any admissible control function, the deviation
of the functional from its minimum value does not exceed 0.5.

Second approximation:
e (f,9) =1 () y+ 2 (2) 4%
Poy =P + 20oy.
Let
(=0, yp3=+L.

System (2.97) takes the form

‘l’l*f‘{:'2’f.‘[‘91+2‘f’2l—l'1"ll—1=0; (2.110)
— o | b — 2 | — | 4 | —1=0.

Initial conditions (2,98) take the form
$(8) =0; $,(£)=0.
This system has the solution
BB =0; (H=1/2[x——1].
Furthermore
uy(f,y)=sign 24, (f) y = —sign y.

It is readily seen that the synthesis uy(¢, ¥} coincides with the optimal
synthesis. Let us check estimate (2.94). Using the above relations, we
find

Pyty)=(1—eX=")(y|—y?);

| sup  Py(t,y)— inf Py(t,y)| di=
y € [—1.+1] Y€ [—1,+1]
0.5

0
b=
0
=g % (1— 2=y dt =0.045;

0

Ay 0.045
A 0.5
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Despite the fact that us(f, y) is a strictly optimal synthesis, the estimate
is not zero, unlike that in Example 1: the a priori estimate in this example
is thus too high.
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Chapter II1
DEGENERATE PROBLEMS. SLIDING CONTROL

In Chapter II we assumed that an absolute minimizing solution (y(f), #(f))
of the functional (1.1) existed inthe class D of the admissible pairs of vector-
functions y(¢), u(t). This assumption is not universally true, although it is
valid for numerous important problems. The class D may contain no
absolute minimizing solutions. There always exists a sequence
{ys(t), us(?)}(D, however, such that

I{ysug)— d, d= inf  I[y(@),u ()]
S (y(8).u(2)) €D
(a minimizing sequence).

If a minimizing solution (7 (f), #(f)) €D does not exist, the functional
(1.1) is minimized by finding a minimizing sequence. Once a minimizing
sequence has been found, we can approximate as close as desired to the
optimal control, always remaining in the class of admissible functions.

A construction of a minimizing sequence for the classical object of

variational calculus — the functional j' f°(¢, y, y)dt — is described in /4—6/

(see also Supplement). The main feature of this construction is that the
sequence of paths ys(f) in the phase space goes to some function j(¢)(the
zero closeness function), whereas the sequence of control functions us(t)
has no limit, going to infinitely frequent switching between several (two
for a plane problem) fixed control functions up (/). These terminal
functions y(f) and ug (f), f=1, 2, fully describe a minimizing sequence.
Sequences of this kind define what is known in automation theory as
sliding control. Technical examples of a minimizing sequence are
provided by the "intermittent thrust control" of an aircraft ensuring
maximum range with the engine being switched on and off with the highest
possible frequency (see Supplement) of the optimal pulsating punching schedule
with the press operating at the highest possible frequency /7/.

In this chapter we will describe some methods of solution of variational
problems for the case when no minimizing solution exists in the class of
admissible paths, and investigate the properties of minimizing sequences.
In terms of the corresponding algorithm, these problems are part of a wider
class of so-called degenerate variational problems, whose solution involves
a number of specific difficulties. In particular, the methods of the previous
chapter are ineffective for the solution of degenerate problems even if the
minimizing solution is contained among the admissible pairs y(f), u(¢).

The theory developed in this chapter is in fact the theory of degenerate
variational problems.
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Let us first consider a particular case of the variational problem
advanced in § 1.1, which illustrates the specific difficulties encountered
in the solution of degenerate problems.

§3.1. A PARTICULAR PROBLEM

Let fi,i=0,1,..., n be functions of the one variable u, let V,(f) coincide
with the entire space Y for any € (4, 1), and let V., be a closed region
independent of ¢ and y . The end points are fixed, #=0; #,=4{;5 y(0)=0;
Yyt =uys.

To solve the problem, we make use of Theorem 1.1. We have

R(tyu)=s,(ty) [ () — SO (u)+ ¢ (4,y). (3.1)
If we take @(f, y)=vy, where {=const, the function
R=Ru)="{.f" () — S°(u) (3.2)

is independent of y and the sufficient condition of an absolute minimum of
the functional on the pair (§(#), #(f)) € D takes the form

R(u)= sup R(u). (3.3)
uEVu

Let R(u) have a single supremum point & for any i . This point is
clearly independent of {. Then, by Theorem 1.1, the pair y(¢)=f(a)¢, a(})
is an absolute minimizing solution of the functional. The vector Y= const
is defined by the condition that the straight line (¢ 7({)) passes through
given points (0, 0) and (41, yif) of the ( ¢, y) space. For simplicity, a
three-dimensional space is assumed, i.e., n=2. If the position of the
terminal point ( #jf, y¢) is altered, the vector vy, the optimal control
function #, and the direction of j of the straight line 5(¢) all change.

Now suppose that there exists a vector Y= (1, {2) such that R(u) has at
least n+1=3 suprema u,, u;, u3; where

A CAR O
1 f'(ug) f2(us) |+ 0. (3.4)
L fius) f2(us)

Inserting the control functions u,, us, u; in the equation y=f(u), we obtain
three linearly independent directions in the three-dimensional space
(¢, y', y2), which may be defined by the vectors

ag=[1, f'(up), f(up)], =1, 2, 3. (3.5)

Any vector in the ( ¢, y ) space, including the vector a(ty, yi;, z}). may
be represented as a linear combination of the vectors ap:

a=Yaaa7 ﬁ=1) 2’ 3,

where y',y?% y® are some numbers.
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In other words, the origin may be joined to any point (¢, ¥y}, y}) by a
polygonal line consisting of straight segments parallel to the vectors ag .
This polygonal line belongs to the class of admissible paths if and only if
the coefficients y!, y2, 42 (the projections of the vector a onto ap ) are
non-negative:

v#>0, p=1, 2, 3. (3.5a)

Condition (3.5) has an obvious geometrical interpretation: the terminal
point (fif, ¥lp %) can be joined to the initial point (0, 0, 0) by a polygonal line
consisting of segments parallel to a, @y, a3, which belongs to the class of

admissible paths only if this point lies inside
the trihedral solid angle (cone) o with its apex
NG at the origin, spanned by the vectors ai, a», as
(Figure 3.1). The situation is entirely
a similar in the n-dimensional problem.
Each of these polygonal lines is an absolute
e 7 minimizing solution. It corresponds to a
2, T piecewise-constant control function u(f)
V taking on the values u,, uy u;. Indeed, any
, k2 such pair 7 (f), @{¢) belongs to the class D of
Y ar admissible solutions and satisfies all the
conditions of Theorem 1.1. It ({, 1) € o,
FIGURE 3.1 there are obviously infinitely many such
minimizing solutions. We can thus always
select a minimizing solution consisting of the
least number of straight segments (and the least number of controls).
If the point (%, yif) lies inside the angle ®, this number is n+1=3; if it
lies on one of the faces of the trihedral angle, n=2, and finally if it lies
on one of the edges, n=1.

Thus, the minimizing solutions of the functional are of fundamentally
different form, dependeing on the properties of the function R(u)}. Indeed,
if R(u) has a single supremum point # over u€ V,, the minimizing solution
(¥(t), u(¢)) €D is unique. To find this minimizing solution, we have to solve
a very simple boundary-value problem: find a vector Y= (1, P2) such that
the straight line y=flu(y)}f passes through the point (i1, gl 3%). If, however,
a vector ¢ exists such that R(«) has three supremum points ug , satisfying
the condition (%4, yi1f) €@, the functional has infinitely many minimizing
solutions, which are polygonal lines. To find the constants ;, VP, and the
control functions ug, we do not have to solve any boundary value problems:
they are independent of the terminal point (45, #1f) € ® and are determined
from the finite relation (3.3).

Condition (3.3) in our case contains five equations: three necessary
conditions of a local maximum, e.g., R.(up)=0, =1, 2, 3, if up lie inside
V., and two necessary conditions of an absolute maximum at each of the
points up :

R{w) = R(ug), B=2,3. (3.6)
The other conditions included in (3.3) are inequalities. The number k

of finite equations (3.6) defining the vector ¢ will be called the
degeneracy of the variational problem. The degeneracy k& can be
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defined as the number of linearly independent vectors a; (the dimension of
the solid angle ®) minus one. The above cases correspond (in the same
order) to k=0 and k=n=2,

An intermediate case, k=1, is also possible. Here, for some {= (P;, P2)
R(u) has only two suprema, #iand uz, suchthatthe vector a= (fif, yi, y) may
be writteninthe form a=y®ap, where ag =[1, [' (&g ), f2(us )], v* 20, p=1, 2. In
thiscase, o is aplane angle spanned by @;and a;. The functionalhas infinitely
many minimizing solutions, and the corresponding paths inthe (f, y) space are
polygonal lines consisting of straight segments parallel to g; and a;. In
contrast to the case k=2, the constants i, ¢ and up depend on the position
of the terminal point ( fif, yl;, y,# ), although they are "less sensitive'' to this
factor than for £=0. For k=0, two boundary conditions had to be satisfied,

f il b=yl i=1,2,

and for k=1 only one condition is to be satisfied: the vectors a,,a, and
a=(1,4i;,4%) should be coplanar.

§ 3.2, SUFFICIENT CONDITIONS OF AN ABSOLUTE
MINIMUM AND THE CONSTRUCTION OF A
MINIMIZING SEQUENCE

Let us return to the general variational problem assuming a fixed ¢, .
The sufficient condition of an absolute minimum for this problem is for-
mulated by Theorem 1.1.

Consider a minimizing sequence {ys(¢), us({)} ( D and a function (¢, y)
which satisfy all the conditions of the theorem. Let us analyze the structure
of this sequence depending on the form of the function R(y, u, £). Let
{(y(£), u(?)) be the point of the (n+r)-dimensional space (y, u) where R(¢, y, u)
attains its maximum for a given f,

Let there be one such point on some segment (11, ©2)C (fo, £i). Let further
g?(t)_be a bounded, continuous, and piecewise-differentiable function and
Z(f) a bounded and piecewise-continuous function. Then, by (1.11),
everywhere on this segment

ys(h) = y(#), and ag(f) - u(f). (3:7)

Since {ys(f), us(t)} ( D, a necessary condition for the convergence (3.7)
is that y =f(¢, §, &) almost everywhere on (1), ;). Thus, for those points
where the function R(¢, y, u) has a single supremum point (7, ), the
minimizing sequence converges to (y(f), u({)), and this pair of vector
functions should satisfy equations (1.3).

Now suppose that on the segment (11, 12) ( (£, ¢;) there are m different
control functions uy such that R(f y, u) has a supremum at every point
(y, ug) of the space (y, u) (7 is the same for all the suprema), i.e.,

Rt y@®), ug(]=p(t), B=1,2,...,m, (3.8)
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and let there be k+1<m control functions ug, =1, 2, ..., k+1, such that

the vectors apg =[l, f(f, §, ut )] of the (4, y) space are linearly independent.
Then, by (1.11), 7s(?) —7(¢), whereas the control function ug(f) does not
necessarily have a limit. It is sufficient if this control function "oscillates"
between up(f). The latter signifies that for any £>0 and a sufficiently large
terminal S, one of the inequalities

{us(t)—up (1) |<e, =1, 2, ..., m, (3.9)

should be satisfied everywhere on (11, 72), with the exception of a set of points
whose measure goes to zero for S—co,

The limit function 7(f) in this case is not necessarily a solution of (1.3)
for any u(f). It is necessary, however, that on (11, 72) the vector a(f)=(1,7)
of the space (4, y) belongs to the angle off, 7(¢)], which is a convex envelope
of the vectors

ag=[1, F\(¢, y, us), F2(L, y, up),.... /" (£, 4, 1)},

B=1, 2,..., &+ 1.

In other words, it is necessary that there exist some functions y? (f),
B=1,2, ..., k+1, such that on (71, 72) the vector (1, ¥) is representable in
the form

a(t)=(1,5)=v"-as V¢ (£) >0, (3.10)
Y=y () f (¢,5,19), (3.11)
or
R+l
2;4 Y=1; ¥ >0, =1, 2,...k+1 (3.12)

(summation over B isimplied). The functions vf ({) are piecewise-continuous.
As a result, 7(f)is piecewise-differentiable.

The higher the dimension k+1 of the angle o, the weaker the "coupling"
imposed by (1.3) on the vector function y(f). For k=n, the condition
(1, ¥) € © imposes simple inequality constraints on j(t), instead of equations
(1.3). For k=0, conversely, 7(¢) should be the solution of the equation

y=f[f, Y, llp(f)],

where up is any of the maxima of the function R for a fixed y=j(f).

We will now show that if (I, 7)€ @ on (11, ©2), we may indeed construct
a sequence {ys(f), us({) } ¢ D satisfying (1.3) and (1.11) on (71, 12). Moreover,
we will actually construct this sequence. We partition the segment (t;, T2)
into S intervals by the points 1 ={<f'<...<f5 <1;. This partition is
expected to satisfy one condition only: for S-—oo,

Ag= max|#+l—{1|—0, y=0,1,2, ..,,S—1.

for S+



Let —
ys(=y (") +0(As),
when 248 0 for Ag —~> 0.
As

Every point ( #1, y¢(¢9) in the ( ¢, y) space is joined with the adjacent
point ( #1+1 y.(!1+1) ) by a polygonal line consisting of straight segments
parallel to the vectors

ag (=11, f#L,g(¢), ug (). (3.13)
=1, 2,..., &+ 1.

The polygonal line y,(f) constructed in this way is a solution, to terms
of the order 0(Ag), of equation (1.3) with a piecewise-constant control
function ug(¢), which is equal to wug(f') over the part y?(£1)A; of each
interval Ay=¢"+t—f7,  1If (1.3) is to be exactly satisfied, the straight segments
parallel to the vectors af (/1) should be replaced by the solutions of the
equations

y=rIt, y, wp (.

The sequence {ys(¢), us(t)} constructed in this way satisfies all the
conditions of the theorem on (7, T2): it satisfies equations (1.3) and for any

¢ E (Tlv 72) s
R, 45, 1) > p (0,

where
p()=RI[¢t, y(t), us($)]

is bounded and continuous almost everywhere on (7, t2) in virtue of the
properties of the functions R, j(f), us(f). Thus, if this sequence satisfies
the conditions of the theorem on [f, #] , i.e., beyond the limits of the
interval (ty, T2) , it is a minimizing sequence.

The minimizing sequence constructed by this method has much in
common with the sliding control functions of relay systems in automatic
control theory, which switch from one state to another. For this reason,
it will be referred to as the optimal sliding control.

The limit function () of a sequence of optimal paths yg(f) will be called
the zero closeness function of the sliding control. In the limit, the sliding
control may be treated as "'sliding motion" along the path j(#) with infinitely
frequent switching between different control functions ug (f).

The control switching may occur in any order, as long as the
approximating path yg(f) remains in a sufficiently small neighborhood of
the path y(#).

The optimal sliding conirol is fully defined by the zero closeness
function F(f) and a set of k+1 basis control functions up(f), p=1, 2, ..., k+1.
To find this control, we have to find its defining characteristics.

The least number [ of switchings of ug(f) on every small interval
Ay = (1, t1H) C (74, 12) will be called the branching of the optimal
control on (11, 72). Branching can be defined as the least number of
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straight segments which make up an elementary polygonal line in the (, )
space minus one. We have an obvious inequality I<k.

Note that in our construction of the minimizing sequence, we dealt not
with the total number m of the suprema (7, ug) of R(f, y, u), but with the
number k+1< m of the basis control functions us such that

R(t, g, us)=n(), =1, 2, ..., k+1, (3.14)

and the vectors ap|[l, f(up)] in the (f, y) space are linearly independent.
Condition (3.14) is equivalent on (7, 72) to condition (1.11) if the sequence
[ys(?), us(f)] is constructed by the above method.

The number k£ is called the degeneracy of the solution of the variational
problem on (73, tz). This number, as we have noted before, characterizes
to what extent the zero closeness function is "independent' of the constraints
(1.3). The control functions ug (f) defining the basis vectors ag, =1, 2, ...,
k-1, which span the angle o©(¢) will be called the basis functions of the
optimal sliding control.

Let
Hit, g @), 4@, al=4) [t y(), 2]— 7 y, u), (3.15)
where
POY=9,[t, (). (3.16)
By (3.14),
Hty @), $@), upl=p (t)= sup Z )[f, Y (), b, ul, (3.17)
B=1,2,.., ;+1
or
V(L (@), ugl— SOt 5 (8), el =p (2), (3.18)
B=1, 2,.., k41,

Since the vectors ap are linearly independent, the matrix

L /i), f7(2y)

(3.19)
AN ey R L |

is of rank k+1. This matrix coincides with the matrix of the coefficients

before pi, ¥ in (3.18).

A degeneracy of k thus corresponds to the existence of k independent
finite equations (3.18) to be satisfied by the vector ({) and the function
ui(f). If on (71, 12) the solution has a degeneracy k, then a sliding control

with branching /=%, a zero closeness function 7(#), and basis control
functions u,(f), =1, 2, ..., k+1, is optimal on this interval.
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Is this sliding control unique or do there exist other optimal sliding
controls with the same zero closeness function but a smaller branching on
{1, 12) ? A sufficient condition for the existence of such controls is the
existence of an angle w[f,7(¢{)]of dimension k,+1<k+1. In particular, for
the zero closeness function 7 (f) to be part of the phase path of an absolute
minimizing solution, it is sufficient that there exists a control function
v(f) €V, which, first, satisfies the equation y=f[(¢, 7, v) on (11, 1) (the
angle o) in this case k=0 degenerates into the vector (I, j) and, second,
satisfies the condition

HIt, G(t), p(t), v]=HIt, F(), b (), up (D= (1), (3.20)
For example, in problems which are linear in control functions,

f’.—:A’(t,y)—l—Bj(t,y)uf, i=0,1,2,...n,
J=12..r,
such a solution always exists, and a minimizing solution (7 (f), @(¢))& D

therefore also always exists, although along a so-called singular curve
7 () satisfying the equalities

9 () B) [ty ()] — Bjlt,y(H]=0, (3.21)
i=12,..9,

the degeneracy is k=¢. Indeed, by (3.21), the function

H{Ly (@), $(t), ul=4Bjw)— Biul + 4 A1 (¢, y(O)— A°(¢, y(), (3.22)
i=12..,n,
J=q41,..r
is independent of the control functions u/, j=1, 2, ..., ¢.
Therefore, any control function v(¢)={u!, ..., u” }, where the first

components are arbitrary and the last components maximize (3.22), satisfies
(3.20). In particular, a control function with first ¢ components satisfying
(1.3) also satisfies (3.20).

Irrespective of the degeneracy k, the minimizing solution (j(£), u(?))
exists in the class of admissible solutions D if the branching [ is zero. If
on some (11, T2), [>0, no minimizing solution exists in D, and a minimizing
sequence has to be constructed as described above. This solution of the
variational problem will be called an optimal control with branching on
(11, T2), or an optimal sliding control on (t;, T2), or simply optimal control
if there is no danger of confusion.

Theorem 1.1 reduces the problem of minimizing a functional on a
set D to the problem of finding a maximum of the function R(¢, y, u) for
every fixed f{. Our unknowns in this problem are the minimizing sequence,
defined by the zero closeness function y(f) and the basis control functions
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ug , and the function @(f y). The conditions of the theorem do not prescribe
an unambiguous choice of the function ¢(Z4 y). Making use of this ambiguity,
as in Chapter II, we may select different algorithms based on Theorem 1.1
for the solution of the variational problem.

§3.3. GENERALIZATION OF THE
LAGRANGE—PONTRYAGIN METHOD

For simplicity, we assume that y(f) lies inside V, for all ¢C (4, £,),
the vectors yy=y(to), y1=y () are given, the region V, is defined by the
inequalities

W|<1, j=1,2,...,r,
]

and the functions f! (¢, y, u), i=0, 1, ..., n, are continuous and twice
differentiable.

Consider an optimal control with a zero closeness function y(f) which
satisfies all the conditions of Theorem 1.1, i.e., equality (1.11) in our case.
On (11, t2) C (fy, t1), this optimal control has a degeneracy k. We will
write out all the equations which are contained in (3.14) and which should
be satisfied by the sought functions on (71, ). The function (¢, y) is
assumed to be twice differentiable in the process.

1. Condition (3.17) containing %k equations (3.18) and r(k+1) conditions
for a local maximum of f:

either
Hy=0, lail<1, (3.23)
or
uj= L1, (3.24)
where

B=1,2,...,k+1; j=1,2,..,r.
2. The necessary conditions for a maximum of R with respect to y:

Ryl (f:!_/suﬁ):?yy{f(ﬁyyuﬁ)_}_vwl+<P!Ify[(tvyvu’ﬁ)_ f‘gl (tvyyup)'y=y_(‘)=0,

or
R, (5.0 = () + H i bepyits) | =0 (3.25)
gt dt yrores y=5 () :
The index B in the first term in (3.25) signifies that the total derivative
of g, (4 y) is taken in virtue of the equation y=f(t y, ug ). The total number
of equations in (3.25) is (k+1)n.
Using (3.11), we may write

b=, Ly O1=v —-[a/).
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For every fixed i, we multiply each of the 2+1 equalities in (3.25) by
v?# and add them up. Using the last identity, we obtain

bV H (¢, =0, (3.26)
i=1,2,00; B=1,2,... k1.

Let us write the necessary conditions for a maximum of R(¢, y, u) on
(t1, T2) supplementing them with conditions (3.11), (3.12) which signify that
the sought minimizing sequence belongs to the set of sliding controls on
(t1 T2):

y=vf (t,y,13);
Li)—l—’yaHy(f,y,llp)z O;
HL@),9(0), uﬁ]zuesgp HE (@), y(6),u); (3.27)

k41

2V=LVO>0 E=12,.k+1.
B=1

Here H is defined by (3.15) and (3.186).

This system is an analog of the equations of Pontryagin's maximum
principle for a minimizing solution of class D. In case of zero degeneracy
(k=0), equations (3.27) coincide with (1.3), (2.4), and (2.5) of the maximum
principle.

Equations (3.27) contain 2a+r+k+k-r-+1 unknown functions: these
include n phase coordinates y’(t), n functions v,(f), r(k+1) components
of basis control functions wuj3, and k41 factors v? (¢). The number of

equations is also 2n+4+r+k+k-r4+1. Indeed, we have 2n equations from
(3.11) and (3.286), one equation from (3.12), and k-+r+r-k equations from
(3.17).

The number of equations in (3.27) is thus equal to the number of
unknowns.
Equations (3.27) include k independent finite relations

H (t,5,9,u5 (4,5,9)) — H (£,9.9,1,(t,4,9)) =0, (3.28)
$=23,....,k 41,

which follow from (3.17). These relations indicate that the function

H(t, 7, p, u) for fixed ¢, y, P has equal values at all the suprema u. Hence
it follows that the initial conditions (¢, y, ¢) for the 2n differential equations
contained in (3.27) cannot be chosen arbitrarily: they must satisfy (3.28),
and so the order of the system (3.27) is at most 2n—%.

Conditions (3.28) should be satisfied identically along any solution of
(3.11), (3.26) on (11, 12). Setting the total derivatives of (3.28) with respect
to t equal to zero and insering for { and y the right-hand sides from (3.11)
and (3.26), we obtain the following system of linear equations in y8:
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YE[H, (3.29)

“o f () — Hf
a=23,..,k+1; 8=1,2,....,k41.

oyl __
S =—H,

dq
1
Uy

Here

Tt = f () — f (), )= (t,9,85),
etc. The left-hand sides contain scalar products of the n -dimensional
vectors f and Hy=(Hy:, Hy, ..., Hyn).

If equations (3.29), (3.12) are compatible for any £, y, ¥, they define the
coefficients y?. However, these equations may prove to be compatible only
for those ¢, y, b which satisfy certain finite relations. This will evidently
lower the order of system (3.27) even further,

Let £=1. Then (3.28), (3.29), and (3.12) take the form

H(t'y7"P»u2)'_H(tlysq)’ul):O; (3-30)

y! [(Hy(uz)—Hy(‘ﬁ))f(lh)‘Hy(”l)(f(uz)—f(ul))]""
Y[y (g) — H y(@1)) J (02) — H y () (f () — J (@1))]= _Ht(u2)+Ht(”I); (3.31)

Y 4y2=1. (3.32)

Collecting similar terms in (3.31), we obtain
(V' V) [Hy (1) J (1)) — Hy (1) S (wo)]= — H  (u) + H (),

whence, using (3.12), we obtain an additional finite relation supplementing
(3.30)

Uy () f (i) -+ H ()] — [Hy () ] (s2) + H , (1)) =0,

so that system (3.27) in this case is at most of order 2n—2.

The general procedure for the construction of a solution by Lagrange's
method is not very clear at this stage. In principle, however, it can be
described as follows.

Choose an arbitrary initial vector $9=v(f) and investigate the maxima
of the function

H(to, yo, 9°, u).

Suppose that H(f,, yo, ¥°, u) has a single absolute maximum u;. This
means that for the particular ¢° chosen, the degeneracy is zero at the
corresponding point, £2=0, and equations (3.27) coincide with the ordinary
equations of Pontryagin's maximum principle. Using these equations, we
construct (numerically, siep by step) the functions 7(¢), $(¢), @;(#). If for
some t=t, the function H[¢ 7, v (f), u] is found to have several absolute
maxima (basis control functions} u,(¢), ..., un(f), m>1, and system (3.27)
is compatible at this point, the construction of the extremal can be continued,
in general, from this state in m different directions,

(t. g)=(t [(up))s
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taking k=0, as before, and a sliding control of degeneracy k=m—1 can

be constructed using equations (3.27). Each of these alternatives satisfies
equations (3.27) equally well, but these equations only provide the necessary
conditions for a maximum of R(f, ¢, #). To choose the optimal alternative,
we must rely on conditions (1,11),

Suppose that the optimal branch on (%1, £) is a sliding control of
degeneracy k=m—1. Equations (3.27) together with the initial conditions
y=y (11}, $=v (1) fully define this control. It is constructed as follows.

Given y(ti), ¥(t1), we find the absolute maximum ug of H (v, u); from
(3.29) and (3.12) we find the factors y?. Inserting these ug (1) and yf (1;)
in (3.11) and (3.26), we obtain j(t1),¥(t1), and applying any suitable
numerical method of integration of differential equations, we construct
step by step a solution of (3.27) up to t=f;. If y(4)scyr, a different ¢° is
selected and the entire process is repeated; alternatively, for the same °,
some T2 C[r1, #i] is chosen and, if possible, one of the above control
alternatives with degeneracy k<m—1 is constructed from this point.

A characteristic feature of system (3.27) with £>0 is that its solutions
are not unique. The number of solutions may be infinite, as Example 2.2
in Chapter II shows (a degenerate problem with linear control).

It should be stressed that in the degenerate case, equations (3.27) do not
yield the necessary information even for constructing local minimizing
solutions. With nondegenerate systems, on the other hand, the equations
of the maximum principle are often solvable or have a finite number of
solutions, so that in principle the minimizing solution can be found by
constructing all the possible extremals and choosing the best alternative.

For k2, equations (3.29) are often solvable for y#, so that (3.27) is
of order 2n—£k, i.e., the set of its solutions contains 2n—k% constants.
Further analysis of the function R (see § 3.5) shows that the necessary
conditions for a maximum of the second derivative of R are satisfied only
by those solutions of (3.27) (if they exist) for which the coefficients of (3.29)
identically vanish, so that the right-hand sides of this system are all equal.

k(k—

This generates D +k additional finite relations. If they turn to be in-

c

dependent, the overall order of system (3.27) does not exceed
on—ok— k1) ('k; D,

The system of finite relations may contain less than 2+
dependent relations.

For example, it can be shown that if the degeneracy is k=n and the
integrand is independent of the control function and has a stationary point
y(t) for every ¢C (f, 1), where j(¢) is a continuous and differentiable
vector function, system (3.27) is of order zero.

k(k—1)
2

in-

§3.4. REMARKS CONCERNING THE HAMILTON —
JACOBI—-BELLMAN METHOD

The Hamilton—Jacobi—Bellman method was considered in Chapter II for
those cases when the minimum exists in D. Unlike the Lagrange method,
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where Pontryagin's maximum principle equations are replaced by (3.27),
the Hamilton—Jacobi—Bellman method is extended to the case of sliding
control without any change.

Indeed, consider the function P(¢#, y), (2.65), and choose ¢(f, y) so that

P becomes independent of y, i.e., so that equation (2.66) is satisfied.

As in Chapter II, the function (¢, y) desctribing the optimal control field
is defined by the partial differential equation (2,66) with the boundary
condition (2.69). _

Having found a solution ¢(# y) of this equation, we obtain an optimal
control function #(f, y) at every point ({, y), but this control is not
necessarily unique. It is defined by equation (2.65) and in practice is obtained
in the course of construction of P[t, y, ¢(t, y)].

To obtain an optimal solution corresponding to some fixed initial
condition (f,, yo)¢, it is sufficient to integrate system (1.3), closed by
equation (2.65), with this initial condition. If the solution of the problem
with this initial condition contains a sliding control section in (1), r2), the
required solution is realized automatically. Otherwise we would have ended
up with a non-optimal solution satisfying the conditions of Theorem 1.1,
which is impossible.

In numerical integration, the sliding control section emerges as a
control schedule with very frequent control switching. The switching
frequency increases as the integration interval diminishes, and the sought
minimizing sequence is thus indeed obtained by reducing the integration
interval.

We would like to stress some characteristic features of the partial
differential equation (2.66) in this case.

Let the function H(f, y, ¥, u) have the form

H=K(t, g, %) +L(t y, $)u,
where uC[—1, +1] is a scalar. The function P thus takes the form
P=K(t y, 9) + L ¢ 9u) | T,

i. e., the left-hand side of the partial differential equation (2.66) is non-
differentiable. This situation is characteristic of all degenerate problems.

§3.5. THE METHOD OF MULTIPLE MAXIMA

Consider another method of solving degenerate variational problems,
which differs from the Lagrange and the Hamilton—Jacobi methods. When
applicable, it has a number of distinct advantages which will be considered
below. This method uses a particular definition of the function (¢, y).
First let us consider a particular problem of minimizing the functional
(1.1).
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3.5.1. The simplest functional

Let

[= 0(f dt:
,Si O, o) 5.3

y=r(t,yu) Ty <u<T,.

Here y(f) and u(f) are scalar functions,
Yo=Yof, hh=Yif.

Let f,32>0 for u€[l, I';] and let the region V,(¢) of the admissible values of
y be restricted to the solutions of the equations y=f(¢, y, I, 2) which pass
through the given initial and terminal points. Additional conditions may also
be imposed on Vy({).

At every point ¢, y€ V,(¢) we find Pp=1p (¢, y) such that H={yf—f0 attains a
supremum at least for two values of u,

H[t’y)"P(tvy)v ul(tvy)]zH[tvyy(‘quJ(tvy)’u?(tvy)]zd(t:y); (3'34)
dty)y=_sup H(Ey9(¢y)u), (3.35)

and the vectors [1, f(«;)] and [1, f(u)] are linearly independent, i.e.,
f (1) 5= (us).
As we have seen before, relations (3.34) and (3.35) incorporate three
equations in three unknowns gy, 4z, ¢ . Let I'<u;<T;and uz=T2. Then
H(tybu)|}=

=4[f (T — f ()] — [/ (To) — f2(x)] =0; (3.36)
H, (u) = 4f (1) — £ (2,)=0.
Solving the second equation in (3.36) for 1 and inserting the result in the

first equation, we obtain an equation for u,.
The function @({, y) is now defined by the equality

ey =10 (4 y);
o (t.y)={ 9(t.9) .
The integral in (3.37) is indefinite, with fixed ¢, since an additive

constant in the expression for ¢ does not affect the solution of the problem.
Thus

(3.37)

R (t.y)=d(t.y) f t.y.)— Fotym)+ § 4, (8y)dy, (3.38)

P(ty)=supR=d(t.y)+ | v (t.)dy. (3.39)

Maximizing P(¢, y) with respect to y for every fixed (€ (f, #), we find a
solution 7 (f) of the equation
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P("?):y;}“i,)” t,y)=p(2). (3.40)

The function y({) in general consists of pieces of the boundary of V,({)
and the solutions of the equation

R,(¢,y)=0 (3.41)

in Vy(f).
Let 7({) be continuous and piecewise-differentiable on [f,, f]. Let it
further satisfy the inequality

f(E, §o m) <F<HL, F, u2), (3.42)

which in our case is equivalent to the condition (1, 7)€ w(f, 7(£)) . Then 7(¢) is
a zero closeness function of an optimal control of degeneracy k=1 with the
basis control functions u;, us.

Indeed, for every € (%, ), the function R(¢, y, u)defined by (3.38) has an
absolute maximum at the points (¥, u1) and (7, u2) of the plane (y, u). The
problem is thus solved.

The above discussion also reveals the characteristic features of this
algorithm, In a sense, it is "antipodal’ to the Hamilton—Jacobi—Bellman
method, Both these methods, in contrast to the Lagrange method, impose
certain constraints on ¢(f y) which should be satisfied identically in V.

In Bellman's method the optimal path is selected by choosing a control
function u=12 which ensures sup R, while R is maximized with respect to

v
y by an appropriate choice of cpu(t, y). In the new method, on the other hand,
a minimizing solution is obtained by choosing the point y=¥ in the phase
space for every ¢ on which sup R is attained; the maximum with respect to
u is ensured beforehand by an appropriate choice of ¢(f, y). Indeed, ¢ is
chosen so that at every point (4, y) there exists an angle o (1, 7).

The specific features of each method automatically define the range of
problems to which they are best applied: the Hamilton—Jacobi—Bellman
method is little sensitive (at least in principle) to constraints on the control
function, while being extremely sensitive to constraints imposed on the
phase coordinates, the constraints on the vector y included. For the new
formalism, on the other hand, the constraints on the phase coordinates are
of no significance.

In virtue of the particular construction used, the method of multiple
maxima is applicable only to degenerate problems (although not necessarily to
branching control). This is atypical method for solving degenerate problems.

The above discussion illustrates the efficiency of the method. Thus,
instead of solving a boundary-value problem for a system of differential
equations, whose solution is far from covering all the possible control
programs (Lagrange's method), or solving a nonlinear partial differential
equation (the Hamilton—Jacobi method), the method of multiple maxima
reduces the entire problem to elementary relations. This simplification is
made possible by the relaxation of the constraints on y(#), u(f) as a result
of degeneracy. The condition of the strict equality of the vectors (I, y;)
and (1, f (4 g, #)) in the (4 y) space is replaced by the weaker condition that
the vector (1, ) should belong to the angle (f 7({)).
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We will now consider the generalization of the method of multiple maxima
to some common multidimensional (n>]) variational problems.

3. 5. 2. Systems with linear control

Consider the following particular case of the general variational problem
(Chapter 1). The functional [ is given by

t,
1={ foty0)dt+F (you), (3.43)
tll
the differential equations (1.3) have the form
y=I(t y, u) =g (¢, y, 0) +h(t, y)w, (3.44)
where
u= (v, w), v={(vt, 02 ..., v71),

and w is a scalar control function.
The set V. (¢4, y) is defined by the conditions

vE V(4 y), w C V(L y); (3.45)
YEV (1), t €, 1], (3.46)

where Vi(/, y) is a given set of points in the (r—1)-dimensional vector
space, Vyis the segment [w,({, y), ws(t, y)].
The vector functions g(f, y, v)=(g', g% ..., g")and (¢, y)= (A", K3 , k™)
are continuous and differentiable for all tE[tg, i yEVL(), vEVL( y).
Problems of this kind constitute a special class in variational calculus,
since the standard classical necessary and sufficient conditions do not
provide a solution for the local minimum of the functional in this case.
Thus, Weierstrass's and Legendre's strengthened conditions /3/ a priori
do not hold. Jacobi's condition is meaningless for these problems.
To solve the problem, we will apply Theorem 1.1. We have

Rty v w)y=9,(g(t y, v) +h(L, y)@)— [°(t, 4, V) +or (3.47)

The function ¢ being arbitrary to a degree, we define it so that for any
admissible ¢ and y,

oy (t, y)=0. (3.48)

Given this ¢, the function R is independent of w.

Condition (3.48) is a partial differential equation for the function ¢. The
general solution of this equation is an arbitrary continuous and differentiable
function

=% (t3n):
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where

N=n(t,y); (3.49)
nt, yY)=0', % ..., n"7Y is a set of the (n—1) independent first integrals
of the system of differential equations

dy

L= 3.50

—-=h(ty). ( )

We choose f, y as the new arguments of the function ¢; . This gives
n
R=R,({",y,0)=¢1n, (2 nyig'(t,y,v)+n,)_ JO(2,y,0) 4 @44 (3.51)
=1

The problem now reduces to finding the maximum of R; for every fixed
tE (fy, 1) on the set of points (1, ¥, v, @) in the (n+r+1)-dimensional set,
which satisfy the conditions (3.45), (3.49) and the condition y €V, (¢) .

Formally, the R defined by expression (3.51) is a function of the
functional (3.43) and the following system of constraints:

7

. Y . '

’1212 Ny g (£,y,9)+ 1y (3.52)
=1

nW=n(ty), j=1, 2,..., n—1, (3.53)

where n/ are phase coordinates, y!, @*are control functions.

We will show that in the absence of any constraints on w, the initial
problem (we designate it Problem 1) can be reduced, actually as well as
formally, to the problem of minimizing the functional (3.43) on the set of
elements (n(¢), y(t), v{{), w(t))satisfying equations (3.51), (3.52) and con-
ditions (3.45), (3.46) (we designate it Problem 2),

Consider a set D; of elements (n(¢), y(!), v(¢), w({)) satisfying the
following conditions:

1. The vector function n({)=(n', n% ..., n"!) is continuous and piecewise-
differentiable on [fp, #;]; mnfare the new phase coordinates.

2. The vector function (y(f{), v(f)) is continuous everywhere on [fs, ;]
with the possible exception of a finite number of points, where it may have
discontinuities of the first kind.

3. For every (C|[to, #] the vector (n, y v} belongs to the set V(f) of the
(2n+r) -dimensional space defined by conditions (3.45), (3.48), and (3.46).

4. The functions n(f), y(f), v(f) satisfy equations (3.51). The set of all
control functions (y(f), v(¢)) is designated D,. Problem 2 is formulated as
follows. Find an element (n(f),y(¢), v({))€ D\ on which the functional
(3.43) attains its minimum value on D,;. For the purposes of Problem 2 it
is assumed that the sought element (n(¢), y(¢), v(t)) is contained in D;.

All that follows can be generalized without difficulty to the case when the
minimum of / is not attained on D; and a minimizing sequence is to be
constructed in D,.

Let us consider the simultaneous equations (3.44), (3.52) for (y(¢), v(¢) .,
w(t)) €D . Then, by (3.53), there are only n independent equations among
(3.44), (3.52), and the equations in (3.52) are independent of one another,
We will now show that D, DD .
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Indeed, let Dy by a subset of elements of D, satisfying all the conditions
of D, with the exception of equations (3.44). Then DyD D , since system
(3.52) contains fewer independent constraints than system (3.52), (3.44),
which is equivalent to system (3.44). Hence, Dis a subset of Dy, D;,>D .
Then, in virtue of the particular structure of the functional (3.43), we have
the obvious relations

inf /= inf / Cinf /. (3.54)
D, D, D

Suppose that Problem 2 has been solved, say, by further investigation
of the function R; and the conditions (1.12). Let (7(¢!), 9(¢). @(f)) minimize
the functional (3.43) on D,, where #({) may be any piecewise-continuous
function on [fp, #], since the functional and system (3.52) are independent
of w. We will now show that a function @ ({) exists such that there is an
element (7(¢), #(t), wW(¢)) satisfying equations (3.44) which satisfies to any
desired accuracy the boundary conditions (3.46) and the constraints (3.45),
(3.46) and approximates* to the element (7(¢), 5(f), @W(f)) € D,.

Indeed, if 7(f) is continuous and piecewise-differentiable, with a finite
number of points of discontinuity of the derivative, then inserting j({) in
one of the equations in (3.44) (such that the substitution does not give a
trivial relation of the form 0= 0) and solving the resulting equation for w,
we obtain a function @ (¢) which, in virtue of the properties of j(f) and
g, h has at most a finite number of discontinuities of the first kind. In
this case (F(f), #({), @(¢)) € D and we may take

(y(), 5(1), w(t))=(g(t), 5(t), w()).

If 7(¢) has a finite number of discontinuities of the first kind, we proceed
as follows. Suppose that relations (3.49) are written in the form

y=x(M,8,8), x=0u4x%....x"), (3.55)

where y'(n, 8, ) are some constraints which are continuous and differen-
tiable functions of their arguments, 0 is some scalar variable.

We know from the theory of ordinary differential equations that such a
representation indeed exists (see, e.g., /2/). The substitution of variables
reduces (3.52) to the form

A= v(n,6,0,¢), v=(V13?,...,v1=1), (3.56)

where v/ (7,6, v, ) are some continuous functions of their arguments, and
(3.44) is reduced to the form
i =v(1,0,2,6); r (357

ézvf(nyeyvvt)—i_Vg(ntgyt)w' (3'58)
¢ We say that a continuous vector‘_.function «(t) approximates on [to, £,] with an accuracy € to some
piecewise-continuous function = (f) with a finite number of discontinuities of the first kind if

| % (t) —=(t) | <e everywhere on [f;, #], with the possible exception of the e -neighborhoods of the dis-
continuity points of »(f).
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The functional {3.43) and the other relations figuring in the problem are
also expressed in the new variables. In (3.57), (3.58), 6 is a control
element, whereas in (3.56) it is a phase coordinate. Let 8({) be the control
function 0(¢) corresponding to the solution of Problem 2. In our case, 16
is some piecewise-continuous function with a finite number of discontinuities
of the first kind (Figure 3.2). Evidently,

y(O=x(n(), 51, 5.

We partition the segment [fo, #] into subintervals A; so that the dis-
continuities coincide with some of the partition points. Joining the points
(fs, 8 (#)) by straight segments, we obtain a continuous polygonal line
(¢, Bs(8)) "inscribed" inside the curve (f, 8 (¢)). Here s=1,2,..., S.

Let us find the solution ns({) of (3.56) for 0(f) = 8s(f), v(f)=%(/) and the
initial conditions ms(?) ='rT(0) . First we will investigate the behavior of the
solution ns(f). We see from the construction of 0s(f) that for any arbitrarily
small >0, there exists 8 (for S—oo, max A;—0) such that

30| B(1)— s (| <e

everywhere on [/, #], with the possible exception of the ¢ -neighborhoods
of the discontinuity points of 8(/). Because of the constraints, we can
construct a closed bounded region G in the space of the variables 7, 8, ¢
which contains all the admissible values of the variables corresponding to
the solution of system (3.52) with the above initial conditions. Since the
functions #! (n, 6, {) are continuous, the increment

sv=|v(n, 5, 2@, )—v(n, bs5(), () )] (3.59)

is of the order e, i.e., O6v<ke for 86<(e , where £k is some constant.

Near the discontinuity points of 6(f), 00 and év are bounded, i.e.,
08</, ov<<m where [, m are constants, Hence we obtain an estimate for

m=|n(t)—ns()|:

£,
= [ V@@, 0@, t—v(, G, T(®), ) lat <
1}

4 N Tn “nr1TF N
<ot (5 wvdi+ | avdf>< N[ms,;/ee‘: Tnﬂ_rn], (3.60)
0] 1 Tyt n 1
where tn, n=1, 2, ..., N, are the discontinuity points of 0(t).
0 8(t)
8s(t) |
1
t
FIGURE 3. 2
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The same estimate evidently applies to
8/ =|Ts—T1.

Hence it follows that for §— co(max Ag—0), IT](t)—_'r]s(t)l -0 for all
IC [t,1] (in particular, Ng(f) ~ n(Z).
Inserting 0s(f), ns(f) in (3.55), we obtain

ys(t) =x(ns(2), Bs(2), 1). (3.61)

The functions x(n, 0, {) being continuous, we obtain

gs(h) —(t)

for S—oco.

Inserting Bs5(1), ms(t), H(¢) in (3.58) and solving the resulting expression
for w, we obtain some piecewise-continuous function % (f) with a finite
number of discontinuities of the first kind.

The sequence (js(f), 5({), ws(t)) is a minimizing sequence, each of its
elements satisfying equations (3.44) and, with an accuracy of &, the
appropriate boundary conditions and constraints; in other words, it belongs
to the set D with an accuracy of €.

We thus arrive at the following general scheme for the solution of the
problem. The starting system of equations is replaced by equations (3.52),
(3.53), where the phase coordinates are the first integrals of (3.50) and the
control functions are y({), v(¢). In virtue of the properties of the first
integrals, this system is independent of the control function w(f). We thus
define a set D, of the elements (y(¢), v({)). We then minimize the functional
(3.43) on the set D, (in a certain sense, this is a simpler problem, because
the new system of differential constraints has a lower order than the
original system). The solution obtained in this way either belongs to D or
can be approximated with any desired accuracy by a sequence in D which
converges to this solution and is at the same time a minimizing sequence
of the original problem. In our case, when the control function wis un-
constrained, Problems 1 and 2 are in fact equivalent.

In general, when V.({ y) is bounded, Problems 1 and 2 are not
equivalent, The above scheme may be applied in this case also: the only
additional step is to check that the function w (¢) satisfies the constraints.
If it does not, the sought solution will contain sections corresponding to
the boundary values of w. Our scheme is inapplicable in this case for a
rigorous solution of the problem. However, the solution of Problem 2
again proves quite useful: it helps to form a qualitative idea of what the
sought solution should be (the discontinuity points of §(f) generally corres-
pond to the boundary control w) and to obtain a lower-bound estimate of
the sought solution (relation (3.54)). The conditions of the optimum
principle (1.11), (1.12) are naturally valid in the general case also. The
sought minimizing solution in this case is probably a combination of seg-
ments corresponding to the interior points of the set V, (singular sections)
and segments corresponding to the boundary of V. On singular sections,
the function ¢ is naturally defined as a solution of the partial differential
equation (3.48), and after that we proceed to investigate the function R;.
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Singular sections are described by equations (3.52), (3.53). On sections

corresponding to the boundary w, ¢ should be defined proceeding from

the specific features of the particular problems being considered (see 3. 5. 4).
Finally, we obtain equations which describe sections of different types

and the function ¢ on these sections. The last step in this solution

procedure is the appropriate matching of the different sections and a final

verification of conditions (1.11), (1.12).

3.5.3. A degenerate quadratic functional

The above method will now be applied to minimize the functional

I={ @ty + 6, yw)at (3.62)

with the constraints
y=M{}y+L(Hw, (3.63)
y(to) =y (t) =0, (3.64)

where
y=" v . 5" )
M(f) and L(¢)=(L', L? ..., L") are respectively an nXn matrix and an n -
dimensional vector of the coefficients of linear system (3.63). Summation
over repeating indices is implied.
The problem should be reduced to the form (3.43), (3.44), and to this
end we will treat it as a problem of minimizing y°(¢{) for the system

0— g, i p :
g a;i(tyy'y’ +6,(%) y'w, (3.65)
y=M@)y+L({O)w,
with constraints (3.64) and an additional condition y°(f) =0.
In this case f°(f y, v) =0; Flyo, y))=yi; &t y, v) = (ay'y’ ., M(9)y),
h=(b(t)y, L(?)).
Let us find the independent first integrals of (3.85)

Ay .
=ty (3.66)

d
=L(2). (3.67)

They have the form

00— L N g — — L BL (2
w=y'—— M)y S (") (3.68)
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i
nf:y]— L y", j=1,2,...,fl-1. (3-69)

L

Equations (3.52) take the form

. 1 1
=a;jy'y’ — ) bj(Miy)y" s (b)) My —

~fom ()~ o5 1]
X )y —[os 5 (B) +i (spptt) [ (3.70)
hi=Mfy——ii—Mny—[—:t—( i] )}y (3.71)

where y/ 4/ satisfy (3.68), (3.69); M/is the j-th row of the matrix M.
Expressing y/ in terms of n/ and y” from (3.68), (3.69) and inserting in
(3.70) and (3.71), we obtain

N=gu ()N + oo (VNP Y" + an (D (Y™, (3.72)

W=mi ()t 1)y (3.73)
ko I=1,2,...,n—1,

where gu(f), @un(t), Gnn(t), mF (¢), [*(f) are the coefficients obtained after
the substitution and collection of similar terms; n* ({)are the new phase
coordinates; y” (f) are the new control functions.

If gnn%0, Problem 2 is non-degenerate and can be solved in finite form
by the standard methods, e.g., by applying Jacobi's classical condition.
The original problem is thus also solved.

A problem of this kind arises in connegction with the second variation of
the functional if the extremal (the solution of the Lagrange—Euler equations)
is degenerate, i.e., if H,,=0 along the extremal.

3.5. 4. An example with constraints on @

Minimize the functional

f
1=f(y’—(y"’)2)df (3.74)

0

with the constraints
:yl—_-y?w; (3.75)
=Y _w; (3.76)
yl

120 |w|<A; A>S0; (3.77)
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g (0)=y2(0)=0, s (t)=4yl, »(L)="1 (3.78)

where {; is free.
To solve the problem, we find the first integral of the system

dy! _ dy? _
o = =Tl (3.79)
The first integral is given by
n=y‘+;—(y2)" (3.80)

Changing over to new variables 7, ¥, w in (3.74), (3.75), (3.76), we
express (y¥?)? in terms of N and y' from (3.80):

t,
7= @3y —2na; (3.81)
0
n=-2—4" . (3.82)
yl
y=V2n—yHw. (3.83)

Since the right-hand sides of (3.81) — (3.83) are independent of ¢ and f,
is free, we can conveniently change over to a new argument . By (3.77),
{]>0 , and this substitution is legitimate. The problem is thus reduced to
the equivalent problem of minimizing the functional

Mt M

/1=Sf°(y‘,n)dnzgyl B2 g (3.84)
n—yl
Mo Mo
with the constraints
1
WY =rf(yne) =—rw, (3.85)
VY 2(n—-gy1)
1 o
To=0; ii=y; +— (41)5 (3.86)
g (M)=0; y'()=yl; 0<<y' <N (3.87)

To solve the problem, we investigate the maximum of the function

R=o, —QE]“—’—EIJ—I)w——yI —3%4—%. (3.88)

R attains a maximum with respect to w under the following conditions:
9,=0, any @ (3.89)

o >0, w=A4; (3.90)

90 <0, w=—A. (3.91)
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In the first case, R takes the form

3y1 —2
R=—y in_Tl"-Ha,,. (3.92)

The dependence of R on y! for some fixed n is shown in Figure 3.3.
It is readily checked that the maximum R for every fixed 7 is attained

for y'(n) = (1— -;7—)1] (see Figure 3.3). The solution of Problem 2 thus has

the form

g=1=VIB)n O<<n<n),

Y=y (=0, (3.93)

It is readily seen that this solution gives an absolute minimum of the
functional (3.84), if the differential constraint is ignored.

RfUyimryy

halL/

FIGURE 3.3

Inserting (3.93) in (3.85), we see that w=o0 for =0, n=m7;, so that the
constraints imposed on w break down. Therefore, on the initial and the
final sections, w is boundary control. Using this information,
we construct a trail minimizing solution, which consists of the following
three sections (Figure 3.4):

I. 0<n<ns (F(n))1 is the solution of equation (3.85) for w=A and the
boundary condition y'(ng)=0.
L m, <<, gy(ﬂ))n=y(")-

L. My, <<y, (M) is the solution of equation (3.85) for w=A and
the boundary condition y'(n)=y}.

The function ¢(n, y') is defined on I, II in the form

¢(, y)=4 My +o(M) (' =y MP, (3.94)

where Y(n), o(n) are some continuous and piecewise-differentiable
functions of 7.

The sufficient conditions of a local maximum of R on I and III have the
form

Py >0; (3.95)

Py=Ry, (n, y', A)=v'+H, =0, (3.96)
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Py = Ry (41 A):o'_|_25< 2(n——y > At Hpyp <0, (3.97)
where
H=4f(g'n,A)—°(y' "),
PM)= sup R(,y',w). (3.98)
|lwj<A
At the points mg, 13 we should have
N=", ($)y=0, (3)=0; (3.99)
N=";, (Mi;=0, (h;=0. (3.100)

Otherwise, the function ¢(n, y') will be discontinuous in y! at these
points (on section 1I, @, =0).

It is readily seen that the solution of equation (3.96) on III with boundary
conditions (3.100) is positive.

Indeed, consider the general solution of (3.96)

L

m
y=e=r { gmerdy; F(={ rmdy,

LE] M3

where £(n) is a coefficient before ¢ in (3.96); g(q)=f,.
On this section fo,, >0 (see Figure 3.3). Hence {(n)>0 for all

n € (s m).
A similar situation is observed on section 1. The only difference is that

the boundary condition here is defined for the right end point and f”
since y'<{ji1. Here again Y(n)>0 everywhere on [no, n2]. Since ¢, is
continuous, we conclude that there exists a neighborhood of the curve
70(n) where
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9,2 0. (3.101)

Consider condition (3.97). This inequality may be replaced by an equation
with a positive right-hand side

U,+23f]ylA+Hy:y|=s(’n)’ (3.102)

where &(n)>0 is some piecewise-continuous function of 7.

Equation (3.102) with boundary conditions (3.100) is a priori solvable
on I and III (a Cauchy problem for a linear differential equation). Hence it
follows that there exists a function @(n, y¥') such that the solution
constructed on I, III corresponds at least to a local maximum of P(y', 7).
and the solution on II corresponds to an absolute maximum of R(n, ¥, v).
We thus see that the solution constructed above ensures at least a strong
local minimum of the functional in our problem.

In this example, Problems 1 and 2 are not equivalent because of
constraints (3.77) imposed on the (:ontrol function w. As a result, we did
not change over to Problem 2 at the very beginning. However, we did
change over to new phase coordinates (y!, n) and the solution of the problem
was thus considerably simplified.

Remarks

1. Problem 2 (the function R, ) may turnouttohave the same singularities
as the original problem (the function R ). The method of multiple maxima
then can be applied repeatedly to analyze Problem 2.

2. A practical shortcoming of the above method is that it requires
determination of the first integrals of some system of ordinary differential
equations (3.50). In applied problems and, in particular, in most problems
of flight dynamics, equations (3.50) are sufficiently simple and their first
integrals are obtained without difficulty.

3. The above method can be generalized without any changes to the
case when the vector function h depends on the control function v, but so
that for fixed { and y the vector A maintains a constant direction when v
is varied. In other words, the unit vector function A(¢, y, v)/|h(t ¥y, v) | is
independent of v, and no constraints are imposed on w.

We write h(f, y, u)w in the form h,(¢, y)w,, where A= I—;Z—I w;=|Alw, and
2 |

w;1is used as the new control function. The problem is thus reduced to the
one considered above.

3.5.5. Systems with several unconstrained control functions

Let the functional (1.1) and system (1.3) have the form

£
/=S Tt y) di+ F (yo,41), (3.103)
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-3
y=gt.y)+ 2 hity)u, (3.104)
I=1

where u!, [=1,2, ..., k, are the components of the control vector u. The
set V, coincides with the space U . The vector functions k; are continuous
and differentiable for every ¢€ (f, t), y €V, , and the functions g, f° are
moreover bounded for bounded ¢y, u.

Although the problem can be solved by the method of the previous sub-
section, using several recursive reductions to Problem 2, we will describe
a different approach which a priori enables us to indicate the conditions to
be satisfied by the vector functions #(¢, y) so that the function

R=gy, (g(f,y)—kl_z1 hz(f,y)u’)—-f‘)(f,y)-w; (3.105)

for every (€ (f, ?;) attains a maximum on

gt) € Vylt), a()€V,, |als=oo. (3.105a)

For simplicity, we assume V,(f) to be an open bounded region, We write
R in the form

R=A(t, y)u+B(t, y), (3.106)
where A(f4, y) is a vector with components ¢,k (f, y), (=1, 2, ..., &k,
B(tv y)=cpyg(t, !/)+‘Pt"‘f°(t1 y)

First we prove the following lemma.
Lemma. For the function (3.106) to attain a maximum on (3.105a) for a
fixed ¢, it is necessary and sufficient that

1) A(ty) =0, (3.107)
2) B(f,y):yg;iz)B(f,y). (3.108)

Proof. Necessity. We write the vector u in the form
u=gv,
where v=|u|; @ is a unit vector (2]’
The inequality
R(t g, w)—R(¢ F(1), a (1)) <O

is satisfied for all y € V,(¢), u €U .if and only if

max R—R(t,y,u)=max {A(ty)ev+B(ty)}—
—R(t,y,)=|A{t.9)| v+ B(t,y)— R (t,y,u) <O (3.109)

for all y€ V,(¢), v €0, +o0].
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The maximum with respect to ¢ is accounted for as follows. The
scalar product Ag is the projection of the vector A on the direction of ¢.
It attains a maximum, equal to the magnitude of 4, if g points along the
vector A.

Suppose that (3,107) is not satisfied and A(¢4, y*(¢)) %0 for some y=y*(¢) &
€ Vy4(¢8). Then, since the first term in (3.109) is positive and the terms
B(t, y*(t)) and R(¢, 7, u) are finite, we can find such v that inequality
(3.109) is not true.

This proves the validity of (3.107) and hence of (3.108), since from (3.107)
we have

R(t,y,u)=B(t y).

The sufficiency of (3.107) and (3.108) is self-evident. Q. E. D.
Condition (3.107) is a system of linear homogeneous partial differential
equations for the function ¢:

Lz(?)=2 ¢l R (f,y)=0. (3.110)
i=1

In general, such systems are incompatible. A necessary condition of
their compatibility is that the so-called Poisson brackets for the functions
Li(t, y, 9y) vanish identically (see, e.g., /9/, p.365):

n n

okl o ond
(L,,L,,,):E Eh; a';’ —2/:;" 0{_ 0,1 =0, (3.111)
Y = Y

j=1 \i=1

Conditions (3.111) constitute a new system of linear homogeneous partial
differential equations for ¢. Seeing that

(LI‘ Lm) == (Lm, Ll)‘

we conclude that the number of these equations is k—(%?ﬂ .

These equations should be added to (3.110), eliminating from the combined
set identities and equations which are linear combinations of other equations.

The subsequent stages of the procedure are described in /9/, and no
details are given here,

Conditions (3.111) will be used in the next subsection.

3.5.6. Minimum of the second variation of the functional
in case of degenerate control

Consider the system of differential equations (3.11), (3.12) which describe

the case of degenerate control of degeneracy k. The integrand in the
functional (1.1) may be written in the form /2/
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Fo=y? () fO(t,y,u3), (3.112)
B=1,...,k}1.
Equations (3.11) may be treated as an ordinary system of differential

equations with linear countrol funttions yf. Solving (3.12) for y!, say, and
inserting the result in (3.11), we find

y=F=f(ty,u)+v (f ({,y,u5)— f (£, 9,1)); (3.113)
Fo=fo(y,u) -+ ¥° (fO(2,y.15) — SO (F5,11)), (3.114)
p=2, 3,..., k41,

where yf are now independent and satisfy only the following constraints:

V>0 X v <, (3.115)

Suppose that a degenerate control is observed on some section,
satisfying (3.27) with the zero closeness function y({) =y (f) and the basis
control functions

u=ag (£), p=2, 3, ..., k+1,
yP=1y? (1), B=2,3, ..., k+1,

where y?® (1) satisfy the strict inequalities in (3.115):

k41

V>0 Jvo<t (3.115a)
=2

Adding small increments 8y? to the functions y?(f) such that (3.115a) are
still satisfied for the incremented functions (y# --0y*) with unaltered
i (t), @e(t), =2, 3, ..., k+1, and fixed boundary conditions y(t,) =y(v1),
we obtain from equations (3.113), (3.114) the corresponding increments of
the zero closeness function, the integrand function, and hence the functional
relative to the values on ( y(f), \* (f), @({}), uwp (¢)). For sufficiently small
increments 8yf, we can retain only the linear components of the increments
y(t)—y ({), which are described by a linear system of variational equations

2'=F,i(t)2'+Fp (), (3.116)
where
d=y = V=¥
and investigate the sum of the first and the second variation of the functional
to within terms of higher order.
It is readily seen that the first variation of the functions is zero by (3.27)

and it thus remains to check that the second variation is non-negative, this
being the necessary condition for the minimum of the functional.
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Let % be the Hamiltonian of (3.113), (3.114):

‘%:LPF_FO:H({! q’» Y, ul)'—' ’YB(HU, Y, P, llp)—-H(f, Y, ¥ ul))s (3-117)

where

-

H(fs ¥ b, u)=4:f(t, Y, u)—fo(tv Y, u)

is the Hamiltonian of (1.3). The second variation of the functional is then
written in the form (see, e.g., /11/)

¥ = —f(%y’uf ()2 2+ Hyt 19 0)2' V) dbs (3.118)
i, j=1,92,..., n B=2 8,..., k1.

The superior bar in (3.116) and (3.118) identifies the first derivatives of
the vector function F and the function # . Summation over repeating indices
is implied.

The problem reduces to investigating the minimum of the functional
(3.118) under conditions (3.116) and the boundary conditions

2(1)=2(1,)=0.

No restrictions are imposed on the variables z{, .

This problem thus corresponds to the case considered in the previous
subsection. To finally reduce this problem to the form (3.103), (3.104), we
will formulate it as Mayer's problem, i.e., the problem of minimizing the
final value of z for zero initial condition, supplementing (3.116) with the
equation

D=H 1 (2) 2 2 - Hyrpp ()2 (3.119)
Equations (3.110) now take the form
Lo (9) == 90,118 (£) 2 + 0,1 Fla (£) =0. (3.120)
Here

“p

u

0 ¢ 1 ! !
hy=H o0z hy=F(t)=f

Note that only hg depends on the phase coordinates; the remaining hg
are independent of z, so that their derivatives with respect to z? in the
Poisson brackets all vanish.

Inserting the expressions for hj, hé in (3.111), we find

(Lp, L= (7, [ —

These combinations should vanish identically in virtue of (3.111). But
@z #%0. Otherwise, condition (1,12) of Theorem 1.1 is not satisfied. We
should therefore have

ug—— U, —
w1y -H

Uy

e, (3.121)

7|:‘,‘;‘T1y “H

uy Y

"= 0. (3.122)

L3

uu —
u, ~f
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Both terms on the right are scalar products of the vectors [ and Hy.
Now turning to equations (3.29) and (3.12), we express y!' from (3.12) in

terms of the other vyE:

Inserting y! in (3.29) and collecting similar terms, we obtain

o Ug

)= —H = [H) 4 ) —H, (@)
e, §=2,3,..., £+1,

and the coefficients of these equations coincide with the left-hand sides of

k —_
(3.122) and should therefore vanish, The number of these equalities is——(kéil),

Ug

0,

=), (3.123)

—_— u Up
YB[Hy uxﬁ_Hyu.f

and, as we saw in § 3.2, in virtue of (3.123) they lead to k further equalities

Hfe 1,

Equalities (3.122) were obtained as the necessary conditions of a
maximum of R and a minimum of ® when minimizing the second variation in
degenerate control problems. They were originally derived in /1/ as the
necessary conditions for optimal degenerate control.

Note that once conditions (3.122) have been verified, the problem of
minimizing the second variation can be solved to completion by successively
changing over to Problem 2.

v f () — Hy () i =o0. (3.124)

3.5.7. A more general problem

Consider the same problem as in 3. 5. 2, using differential equations of a
slightly more general form:

g=g(t, y. v) +h(t y, w), (3.125)
where g(¢, y, v) has the same properties as in 3.5.2, and A({, y, w) and the
boundaries w, (¢, y) and wy(¢, y) from (3.45) are such that the functions
h(t, y, w (¢, y)) and A(f, y, wo(f, y)) are continuous and continuously differen-
tiable with respect to £ and y for all t & (f, #), yEVy(f).

The function R for this problem has the form
R(l‘, y, 0, w) =(Pyg(t, Y, U) 'prh(f, Y, W)—fo(t, Y, U) +@;. (3.126)
We choose ¢{f, y) so that for all #€ (¢, #), yC V,(¢) the function R

attains its absolute maximum on two values of w, w,(f, y) and w, (7, y),

R yov, wilt, 9)) =R, y, v, w2(4, y)) T:_i”pum)t’ ¥ v w). (3.127)
w wih ¥

We see from (3.127) that only the term

(P!I'h’(t: !/, w)
depends on w.
Condition (3.127) reduces to a certain combination of inequality

constraints
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oy € QL ), (3.128)
where Q(f y) is a set in the space of vectors ¢,, and the condition

(Pll(ll(tv yv wl(t’ y))_h(l’ !/, 72'2(1‘, y)):Oy (3'129)

which is a linear partial differential equation for the function ¢ . Its general
solution is an arbitrary continuous and differentiable function of the form

p=0p(% n),
where n(¢ y)=M, % ..., n*") is the set of independent first integrals of
the system of ordinary differential equations
%__’h(t) Y, wl(i’ U))—/'(f, Y, w2(ti !/))1 (3‘130)

with { treated as a parameter.
Let Ry=supR. Then
wEVw

RlchlﬂEn”’gl(tv Y, 'U)—*—n‘.
1

We will further investigate the maximum of the function R, for every
t C (4, t;) on the set of points (7, y, v) satisfying conditions (3.45), (3.46) and
the additional conditions

n=n{ y). (3.131)

It is further assumed that the function ¢(f, y) satisfies (3;128); ~

Suppose that such a function (¢, y) exists and a solution (n(¢), y(£), v(¢))
has been found which under the given conditions ensures an absolute maxi-
mum of the function R, for every ¢ C|[t, #;]; moreover, conditions (1.12)
and (3.128) are also satisfied. Suppose that this solution satisfies the
following system of differential equations:

yZVI(g(tﬂ Y ’U)—/L(t’ Y, wl))"{—\’i(g(tv Y, ’”)'{- :
+h(t1 yv w?))=g(t) y; ’U)—I_\'lh(t? y? wl)+v2h(t1 !/» w2)7 (3-132)
where v (f), v2(f) are some piecewise-continuous functions,
vi(t) +ve(f) =1.

If substituting the solution (§F(¢),7(f)) in this system we find that v;, va
satisfy the conditions

v, 2(f) 20, (3.133)

then (4, §) € @ and the solution constitutes a zero closeness curve of a
sliding control with the basis control functions w;(¢, y), wz(f, ¥y) and the basis
vectors
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a=[1, f (& g, v, w)]; } (3.134)
(12:[1, f(tr ¥ v, w2)]'

Thus, if all the above conditions are satisfied, our solution defines the
sought minimizing sequence and the problem is solved. If no function
¢(t, y) exists and no solution (n(t),y({), v(t)) satisfying all the above con-
ditions, we conclude that the sought optimal control may consist of sections
of different types — boundary sections, Euler sections, sliding control
sections. On sliding control sections, the function ¢(f y) may be defined
by the method that we described.

As in a problem with linear control functions w, we can change over to
Problem 2 as follows.

The initial equations (3.125) are supplemented with the expressions for the
the total derivatives of n(f, y) with respect to ¢:

'":‘21 N, (gt (4, y, 0)+R(E y, w)+Ts (3.135)

Equations (3.125) and {3.135) considered jointly constitute a system of
(2n—1) equations where, in virtue of (1.131), only n equations are independent
and which is obviously equivalent to the initial system (3.125).

We further consider the problem of minimizing the functional (3.43) on
the set L of the elements (n(f), y(f), v(f), w(f)) which only satisfy equations
(3.135) and (3.131), where n' ({) are new phase coordinates and y, v, w are
new control functions.

The remaining conditions (3.45) —(3.46) do not change. The set of new
control functions (y(¢), v(f), w(¢)) is designated D,. Repeating the same
arguments as in 3. 5. 2, we readily see that D;>5 D and

inf /=inf 7/ <inf/.
D, D, D

Suppose that Problem 2 has been solved. The corresponding optimal
control #(f) may take on values corresponding eitherto one of the boundaries
w;, wy of V. or to its interior points. In the former case, both w, and
w, are optimal values, @=uw; . Indeed, the functions v (¢, y) are
solutions of the partial differential equations (3.129) (a property of the first
integrals of (3.130)). Hence it follows that the right-hand sides of (3.135) are
not affected when w; is replaced with w,; and vice versa, so that n remains
unchanged. The degeneracy in this case is k=1 and the functions
g(2), #(t), @(t) should only satisfy equations (3.135) and condition (3.45);
F(®), 5(f), @(¢) can be approximated to any accuracy by constructing an
appropriate sequence in D (sliding control). The solution of Problem 2
can be constructed in D under certain boundary conditions. In the second
case, it is not the properties of n(f, y) that cause non-uniqueness of #(¢).
As a rule, #(t)is unique in this case and, when substituted with #(f) in
the original system (3.125), it defines under the appropriate initial con-
ditions a unique solution y*({), which does not necessarily coincide with
the 7 (f{) derived from other conditions. In this case, the solution of
Problem 2 in general cannot be constructed in D.
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Chapter IV

SOME PROBLEMS OF POWERED
FLIGHT OPTIMIZATION

§4.1. VERTICAL ASCENT OF A ROCKET IN
VACUUM

The present section deals with a relatively simple problem of rocket
dynamics, namely that of reaching extreme (maximum) altitude in one-
dimensional vertical motion in vacuum (airless space). Constant
gravitational acceleration is assumed. This problem may be treated as a
simplified model of the general optimization problem of rocket maneuvers
in a homogeneous field, which is solved in the next section. The method of
solution and the specific properties of the solution of the general problem
are conveniently illustrated in this simple case.

The equations of the vertical motion of a rocket with controlled thrust
may be written in the form

1
W= ——V; (4.1)
’ B
r— oy 1,
Vi=—rty s (4.2)
1
fr=—L 4.3
= (4.3)

where h is the altitude reckoned from the surface of the planet, Vis the
velocity, ristime, mis the mass, ¢ is the nozzle velocity, g is the
gravitational acceleration (assumed constant), ff is the per-second rate
of fuel consumption (the control element), 0<B<fmax. The independent
variable in these equations is the current mass (a non-increasing function
of time).

The following boundary conditions are used:

he=0, Vo=0, t,=0 (4.4)
for m=m, (the rocket starts from rest); the values of v, and ¢ for m=m,
are not given.

Our problem is to find the motion reaching the maximum altitude at
the end of the powered flight (i. e., minimize (—A;)).
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The solution of the problem is divided into two stages: first we solve
the problem for any fixed {; such that

(h—to) 2 (mo—mm1) 1/Bmax,

and then carry out optimization with respect to ¢, which yields the final
solution.
The functions R and @ of our problem are written in the form

—o, [ —~ SRR Sy WP I T
R=an(~=V) For (= St8)— oy tow (4.5)
Q= —hy-fo(my, by, Vi, 4). (4.8)

Note that L may be treated as a linear control function and equations

(4.1) —(4.3) have the same form as the equations treated in 3. 5. 2.
We will use the method of multiple maxima. Solving the partial
differential equation

— 9V +-opg— =0, (4.7)

we obtain the first integrals E, m of the characteristic system

dt dt
namely
E=V +gf, n=h—Vl—-é— gt (4.9)

The general solution of (4.7) is an arbitrary continuous differentiable
function @((& 7, m). Inserting this function in (4.5), (4.6) and changing
over to new variables & and n, we find

Ry =(p1e—¢10f) (*"’;—) + @ (4.92)
By N — gl — =g Felmy, &, M. (4.10)
The function ¢, is given in the form
?1="%t + Py, (4.11)
where V), Py are some constants. Then
=0 fre=twi @1="%m, (4.12)
and (4.10) takes the form
O = —M— &+ +‘P(n)n1+_;“ gh. (4.13)
Taking 9@ =1t;, Ym=1, we find
<I>1=% gfi==const =§i{\¢>l (4.14)
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for any E, n. The function R; takes the final form
= (t,—f)-2 . (4.15)
Ri=—(h—1)<

Let us investigate the minimum of this function* for any fixed mg (m,, my).
The minimum is clearly obtained at the lower limit value of ¢, i.e., f (m).
The extreme values of ! over the interval (mo, m;), i.e., fL{m) and

ty{m), are obtained from equation (4.3) with the appropriate boundary
conditions and the constraints on . The lower limit f (m) is the solution
of equation (4.3) for B=PBmax which passes through the point (me, #), and
ty(m) is the same solution passing through the point (m, #) (Figure 4.1).

Indeed, no solution of (4.3) passing through (m, f) may lie below f,(m)
for any m<m,, and no solution passing through (m;, {|) may lie above ty(m)
for any m>m;, since this would necessitate B>Pmax. The two straight
lines f1(m) and fy{m) are parallel.

This concludes the first stage of the solution. The resulting motion
starts from the initial point along the lower limit ¢=/fy(m) and then
abruptly "jumps'' at m=m, from f.(m,)to ;. In other words, maximum
thrust B=fuas is maintained until all the fuel has burnt out, followed by a
coasting stage until f,.

t ty(m)
t, / o
e
to 7 Lz
tL(my
my o _T;Ia :;ﬁ
FIGURE 4.1

Here {(m) is a discontinuous function. We can restrain the solution to
remain in D by replacing the vertical segment issuing from the point ¢ (see
Figure 4.1) with an inclined segment extending to intersection with {L(m)
and making the slope factor of this segment go to infinity £2—oco. This is
achieved by constructing a control sequence with §—0 over a finite length
of time. This sequence satisfies all the conditions of Theorem 1.1.

Indeed, condition(1.12)is satisfied invirtue of(4.14) and condition(1.11) is
similarly satisfied, since on this sequence the function R defined by (4.15)
is minimum everywhere, except a set of points m whose measure goes
to zero.

To find the optimum value of ¢ (the solution of the second stage of the
problem), it suffices to integrate (4.1) —(4.3) in order to obtain the
dependence of h; on {, and then find the maximum of #4,. It is readily seen

* The condition of maximum R (Theorem 1.1) is replaced, as is readily seen, by a condition of minimum
when a decreasing argument is substituted for an increasing argument,
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that the sought f; corresponds to V;=0, and the maximum value of A, is
given by

2
/zlzl—(c lnﬂ-) — 0™ S (g —my). (4.16)
my Bmax my Bmax

The reader will be able to apply the same method to solve the problem
of soft vertical landing with minimum velocity on the surface of a planet
without an atmosphere, for given initial conditions.

§4.2. OPTIMUM MOTION CONTROL OF ROCKETS IN
A HOMOGENEOUS GRAVITATIONAL FIELD IN
VACUUM

Various problems of rocket dynamics are concerned with maneuvers
which must be performed within a relatively small region of space and in
a comparatively short time, so that the real gravitational field acting on
the vehicle may be treated as constant (the homogeneous field approximation:
the real field depends in general on the position of the spacecraft and the
time).

For maneuvers performed near the ground within a sphere of some
100 km radius, the relative error of this approximation is about 1.5%.

As the rocket moves farther from the primary center of attraction, the
error decreases (other conditions being constant), so that a midcourse
correction on a lunar or an interplanetary trajectory may be treated as
taking place in a homogeneous field. This significantly simplifies the
analysis and leads to effective solution of numerous optimum problems of
rockets dynamics /8, 9/.

The general structure of optimum motion control in a homogeneous
field has been investigated by a number of authors /2, 3, 11/.

4.2.1. Statement of the problem

The motion of the center of mass of a rocket powered by a thrust vector
in vacuum in a homogeneous gravitational field is described by the following
set of equations:

t

-

K;—V; (4.17)

V/

3|~

I

p_ﬁLg; (4.18)

= —

£ (4.19)
8
where r=(r!, 2, r3), V=(V!, V2, V3) are, respectively, the radius vector

and the velocity vector of a point in the inertial frame of reference;
g=(g', g% g°) is the constant gravitational acceleration vector; p is the unit

93



thrust vector (a control element); {is time; m is the mass (independent
variable); Bis the rate of mass consumption {another control element);
¢ is the nozzle velocity. In addition to (4.17) — (4.19), the admissible
motions also satisfy the constraints

0P8, where B, <oo (4.20)

and the houndary conditions
(ro, Vo) € B (mg) (4.21)

for {,=1fy; and m=my, and
(r. V)€ B (my) (4.22)

for f,=tyand m=m,.
Here B{m) is a set in the vector space (s, V). The set of control
functions

z(m)=(r(m), V(m), t(m), p(m), B(m))
satisfying the above conditions will be designated D. Our problem is to
find a control function Zz(m) in D on which the functional — some function
F(r), Vi) — attains its minimum.

If the sought control function Z(m) does not exist in D, we will have to
construct a minimizing sequence Zzg(m) in D.

4.2.2. Transition to Problem 2

We construct the functions
1 , 1
RV, pbmi=s (== )V (= p——g)+ &, (—5 )t o (429)

G(ro, Vo, 1, VI=F(r, V) tolr, Vi, &, m)— ¢(re, Vi, fo, my). (4.24)

The first two terms on the left in (4.23) are scalar products of three-
dimensional vectors.
The function ¢ is defined as the general solution of the partial differential

equation
¢V +opg +9,=0, (4.25)

where the left-hand side is the coefficient before Fl in expression (4.23) for
the function R. The solution of this equation has the form

(P:(?l(Ev ny m)v (4‘26)
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where t= (8, £2, £3), n=(n!, n2, n) are the vector first integrals of the
characteristic system of equation (4.25):

dr

—dt_ ; (4.27)
av

_— .2
Tt (4.28)

It is readily seen that the characteristic equations in this case describe
the coasting of a point in a homogeneous field.
The first integrals &, n are given by

E=V —gf; (4.29)

Ne=r—Vit gt (4.30)

Inserting the solution (4.26) in expressions (4.23), (4.24) for R and @
and changing over to new variables, we obtain

R1=mﬁin R= —— (¢ — 93t} P+ P (4.31)

-~
m
O =F ¢ Ny ) e G My, 1) 9 (Bos Mo, M) (4.32)

The functions R, and ®; require further investigation. In accordance
with the theory of 3. 3.2, this transformation of the functions R and @ may
be interpreted as a transition to Problem 2, which calls for minimization
of the same functional over the set D, characterized by the same system of
boundary conditions and constraints and a new system of differential
relations:

E’:-—L ; (4.33)
m

n'=- pf, (4.34)
m

where the components of the vectors § n play the role of phase coordinates,
and the components of p and the time ¢ are the control elements. If
equations (4.33), (4.34) are supplemented with equation (4.19), the resulting
system will be equivalent to equations (4.17)—(4.19). Suitable transfor-
mation of coordinates will move one system into the other. The expressions
for the functional and the boundary conditions change accordingly under this
transformation. Since (4.33), (4.34) contain fewer constraints than
(4.17)—(4.19), the set D, is wider than D, i.e., D,DD, so that

inf/ inf /. (4.35)
D, D
We will show in what follows that the equality sign applies in (4.35), i.e.,
the initial problem may be replaced by Problem 2.

Note that (4.33), (4.34) have a peculiar characteristic: the right-hand
sides of these equations are independent of the phase coordinates.
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The necessary conditions for a minimum of R are the following:

Rie(E 0, p, T, m)=0— §;,=0; (4.36)

Ri, (8, 0, b, %, m)=0—pp,=0; (4.37)

R n, p, £, m)=infR(E W, p, ¢, m), (4.38)
PUEE[L Y]

where

by =g (m, & M),
by =9, (m, & ).

Here E(m), H(m) are the values of E 7 along the sought optimal
solution.

Relations (4.36) —(4.38) correspond to the adjoint system and the condition
of minimum of H (a function with a decreasing argument) in Pontryagin's
maximum principle. These equalities thus give the necessary conditions
of optimality. By (4.36), (4.37), {:, ¢,are constant (since the right-hand
sides of (4.33), (4.34) are independent of the phase coordinates).

The function H has the form

H=_‘;‘P(‘P(E)—‘P(n)t)~ (4.39)

The minimum of H is evidently attained for

by — Yent
p= I 1(5) ) t (4.40)
[ Yooy~ em £
and it is equal to
. 4
Hl"m;“H— = e — 9=
. _
=T m N(E))Z_Qq’m‘]’(mt‘r (Y 2% (4.41)
t
b e Iyt
777775%”722
—
o
I
P ms my M
FIGURE 4.2
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The minimum of A, with respect to { coincides with the maximum of the
radicand in (4.41), which is a quadratic trinomial in £. If ¥y, %0, the
coefficient before {2 is positive, so that the radicand in (4.41) can attain
a maximum only for extreme values of {, i.e., fL(m), fy(m) (Figure 4.2).

Comparison of the values of H; at the lower and the upper limits yield
the following conditions for optimum selection with respect to ¢:

tmy for Yo¥w ~  (m+tym)
(Y ) 2
- .42
: ty(m)  for Yavm - fim)+fym) (4.42)
(Ym)? 2

Since the left-hand side of the inequality in(4.42) is constant and the right-hand
side is a monotonically decreasing function of mass, the motion from myp
to m; (in the direction of decreasing mass) can have at most one control
change, necessarily from the lower limit L(m) to the upper ¢y(m).

In particular cases, depending on the values of ¥ ¢, control functions
without abrupt change are possible: either ¢=tf.(m) or f(=fy(m).

For ¢ =0, the function H, is independent of { and the condition of
minimum of H,; with respectto ¢ is satisfied by any piecewise-continuous func-
tion f(m) varying between the fixed limits. This case is observed when either
the initial or the final value of the vector is free.

If the function F; is concave and the boundary conditions are fixed or
defined by linear forms in terms of the initial and the final values of the
coordinates (the components of the vectors &, Mo, &, Mi), the necessary
conditions (4.36) —(4.38) are also sufficient, since the right-hand sides of
(4.33), (4.34) are independent of the phase coordinates. Therefore each
solution satisfying the above conditions is of necessity optimal. In par-
ticular, if the limit value m; or mo of the vector n is free, the optimal
solutions are inherently not unique. Any combination of the control
functions

where ) is selected so that the boundary conditions are satisfied and
t(m) is any function falling within the admissible limits, is an optimal
solution of Problem 2. This can be verified directly, by eliminating
equation (4.34) from system (4.33), (4.34) and considering the problem for
equation (4.33) only, whose right-hand side is independent of f.

In the general case of nonlinear boundary conditions and nonlinear
functionals, conditions (4.36)—(4.38) are only necessary. To find the
optimal solution in this case, a further analysis is needed (e.g., further
investigation of R). However, since conditions (4.36), (4.38) are
necessary, they describe the structure of the optimal solution.
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4.2.3. The solution of Problem 2 in the original
set. The structure of optimal control functions

The solution of Problem 2 belongs to the set D> D. If this solution in
the (f, m) plane satisfies equation (4.19) with the given constraints on B, it
also belongs to the original set D and is thus a solution of the original
problem. It is readily seen that solutions of the form shown in Figure 4.2
(the case VP #0) satisfy equation (4.19). The sections of the upper and
the lower boundaries correspond to B=Pmay (motion with maximum thrust),
and the jump at the switching point corresponds to B=0 (coasting with the
thrust off). The direction of the thrust vector along the powered sections
is determined by equation (4.40). If we strictly confine the solutions to the
class D, which corresponds to continuous functions f(m), the solution of
the problem is provided by a sequence which in the (f, m) plane (Figure 4.2)
corresponds to a sequence of the functions {(m) obtained when the sudden
jumps at the points mg, m,, my are replaced by inclined straight sections
with the slope factor going to infinity (as in § 4. 1).

The case =0 requires special consideration. The solution of
equations (4.36) —(4.38) in this case incorporates all the piecewise-
continuous functions f¢(m) satisfying the constraints {.(m)<t(m)<fy(m) on
[m,, mg] and the boundary conditions f, ;. These functions may include those
which do not satisfy equation (4.19). If the conditions are nonlinear at the
two end points, further analysis is required in order to find the optimal
solution of Problem 2. There is danger, however, of ending up with an
optimal solution which corresponds to a function f#(m) that does not satisfy
equation (4.19).

In order to assess the imminence of this danger, let us consider the
solution of system (4.33), (4.34) for ¥(;=0. By (4.40) we have

= ~&=const. (4.43)
(el
Hence
g =k pin 20, (4.44)
mp
n,=n0+py (—L’")) dm. (4.45)
m

We see from (4.44) and (4.45) that the vectors (& —§&) and (ni—n,) are
collinear with the vector p and the ends of the vectors (n;— no) define a
segment in the direction p with the end points

my

m
Mo

(4.486)

m,
——05 W) gm.
m
mo
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The sought optimal value of (n,—mne) must lie inside this segment. If it
coincides with one of the end points, the corresponding function #L(m) or
ty(m) is unique and is represented by equation (4.19). If, however, it lies
inside the interval, there are infinitely many solutions {(m) satisfying the
only condition

",
P(nl—'no)=~0j‘ ’fni’dm. (4.47)

Mo

Among these solutions, we can always choose a set of functions f{(m)
satisfying equation (4.19) and the appropriate boundary conditions. A
suitable function f{(m) may be sought in the form

H(m)= — —

m_f_a,, (4.48)
max

where the constant a is readily obtained from (4.47). I follows from the

above that in any case the solution of Problem 2 incorporates the solution of

the original problem, which is readily derived from the former. We thus

indeed have the equality sign in (4.35).

4.2.4. Generalization to the case of free end points

The above results significantly depend on the construction of the limit
values of {, which can be done fairly easily for the case of fixed end points.
The solution of the problem with free end points belongs to the set of
solutions of problems with fixed end points and therefore has the same
structure as before. The additional conditions of optimum for mg, &, M can
be obtained by varying the general solution of Problem 2 with fixed end
points with respect to these parameters. The only exceptions are the
problems seeking minimum {, and maximum m,: the former since f is a
control element in Problem 2, and not a phase coordinate, and the latter
since problems with fixed m, are meaningless. The corresponding problems
can be solved by introducing new variables

t=at; m=by,

where 1, p are the new variables (with fixed end points), and a and b are

introduced in (4.33), (4.34) as additional phase coordinates with the

appropriate supplementary equations a’=0, 6’=0. It is readily seen that

the structure of the sought solution remains unchanged in this case also.
Indeed, the equations of Problem 2 in this case take the form

t=——"p;
e
n'=f par; (4.49)
a'=0;
b’ =0,
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where the derivatives are with respect to p, and the upper and lower
limits of © (ty(n) and 7 (u) ) are constructed using the equation

p=a2t1
a B

with fixed boundary values 7o, Mo, T, U1 . They are described by the
eguations

1

N (1 —po);
max (4.50)

! (b —mw).

5
=T~ —

b
Ty =1 ——
U( ! a  Bmax

The functions H and H; for this system are obtained by substituting av
for f in (4.39) and (4.41). Since the right-hand sides of these equations
are independent of £ and 1, the vectors ) and ¢ are again constant
along the optimal solution, so that all the previous conclusions remain in
force.

The new gystem of equations is supplemented with equations for Yy
and Yy,

OH _oH du,u,

Blay=——

da ot da

. ___BH ot U
Y= 5 o

where the terms with the derivatives ‘1;—L1-Uand %U account for the depen-
a

dence of the constraints for T on a and 6 . When 1 takes other than one
of its limit values, these derivatives vanish. For the limit values of t©,
the equation of the corresponding boundary is differentiated.

These comments are not to be regarded as practical recommendations
for the solution of optimum problems. Their aim is to clarify the general
structure of the solution. In practice, these problems may sometimes be
solved by considering the conjugate problems, namely the maximization of
the coordinate for fixed end points f,, Mo, My, 1.

4.2.5. Singular control

Sometimes the condition of maximum of H with respect to u does not
permit identifying a finite number of potential optimum programs. This
situation is encountered, e.g., when one of the control functions enters the
Hamiltonian in linear form and its coefficient vanishes in the optimal
case. The corresponding cases are known as singular control (in
the sense of the maximum principle). The necessary conditions of the
maximum principle for the original problem often do not permit reaching
definite conclusions regarding the optimality of these control functions,
and this in its turn interferes with the elucidation of the general structure
of the optimal control.
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Let us consider this aspect in more detail. We will use the equations
of motion in new variables (4.33), (4.34), (4.19), which are equivalent to
(4.17) —(4.19).

The function A for these equations has the form

H= -—(‘P(e)—q’(n)f)% P+4’(t>%, {(4.51)

where by the conjugate system () and ¢, are constant and YPy(m) is
described by the equation

, oH c
lP(t)=——07=q)(n)—’; p. (4.52)

Here 1(m) is the control switching function.
Along the singular control, p is given by (4.40) and

Py = 0. (4.53)
By (4.52), condition (4.53) leads to
(#) — bent) b =0. (4.54)
The last equality is satisfied under the following conditions

Yo¥m
2
(n)

1)  f=const= ; (4.55)

2) =0 (4.56)
Condition (4.55) corresponds to % =0 (pulsed control). This is a case

of so-called pulsed singular control. Its optimality can be elucidated by in-
vestigating Problem 2 analogous to the original problem, with { treated as
a control element. It is readily seen that (4.55) corresponds to a stationary
point of the quadratic trinomial in { in the radicand in (4.41). Since the
coefficient before ¢ is positive, the Hamiltonian has a maximum (and not
a minimum) with respect to f in Problem 2. The conclusion is that the
singular control of the type being considered is not optimal.

We have seen before that the singular control functions satisfying
condition (4.56) may be optimal and as a rule they are not unique. The
structure of optimal control in this case has been fully elucidated.

4.2.6. Generalization to the case of multistage rockets

The preceding considerations can be generalized to the case of multi-
stage rockets when the engine of each stage has its own maximum thrust.
The argument in this case is conveniently chosen as the characteristic
velocity, which unlike mass is a continuous function of time:

t

=5 Bt 4y
J m )
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Equations (4.33), (4.34) take the form

@, d_ gy
du p, du p’ (4-57)

and equation (4.19) is written as

u—u,; (&)

At mi(e) —
4t _mi) ,
du  cf(u)

(4.58)

’

where m;(u), p(u), ui(u), c(u) are known piecewise-constant functions of
u (ui, m;are the characteristic velocity and the mass of the remaining part
of the rocket when a stage is jettisoned).

It is readily seen that expression (4.40) for the optimal control function
p and the radicand in H; do not change in this case. Only the region of
admissible values of { changes. It is constructed along the same lines as
before; its form is shown in Figure 4.3. Both the upper fy(u) and the lower
t1.(u) limits of ¢ for u & (uo, ;) are solutions of (4.58) for { ; t(u) passes
through the point (f, %), and f#;(4) through the point (41, uy). Since f(u)
and f;(u) are monotonic functions and the interval (f{u), ty(u)) is fixed,
the previous results remain applicable.

ty

Lo
Vi) V-9 Vin v T
e+ g < e_fL et ot
FIGURE 4.3

The above results are generalized to the case when the original equations
have the form

’

rr=—

(04 f1(0);

Ry
7
o' —ﬁp—gl 7200 (4.59)
1
8

f

f=—

L]
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where [i(t), [:(f) are some piecewise-continuous vector functions such
that the integrals

{Awa | Rwa

exist. In this case, only the expressions of the first integrals § m in
terms of r, v, t change. The equations of Problem 2 and the conclusions
relating to the realization of its solutions and singular controls remain
unchanged.

The general variational problem of the dynamics of a point of varying
mass in vacuum in a homogeneous gravitational field thus has been reduced
completely to a new Problem 2 for system (4.33), (4.34), with the mass
appearing as the argument, the coasting integrals of the point mass as the
phase variables, and the thrust direction p and time f as the control
elements. The constraints on time are provided by equation (4.19)
and the boundary conditions for ¢ and m. The right-hand sides of
(4.33), (4.34) are significantly independent of the phase coordinates;
as a result, the adjoint factors are constant. The investigation of
Problem 2 gave the following results.

1. Optimal control in general may comprise two powered sections of
maximum thrust separated by a coasting stage. In the limit, with
PBmax— o0, this corresponds to a case of two-pulse motion, when the first
power pulse is applied at the initial instant and the second pulse at the
final instant.

2. With special boundary conditions, when the final value of the
vector m is either free or is fixed so that the vector increments m1—no and
E—E are colinear, the optimal solution is not unique. In terms of the
maximum principle, these solutions constitute the singular control for the
original problem.

3. Pulsed singular control is non-optimal and is not included in the
structure of optimal solutions.

4. The structure of optimal solutions described above is fundamentally
independent of the number of stages, even if the maximum thrust potential
of each stage is different.

5. The equations of optimal control can be readily integrated analytically.
Any particular optimization problem for motion in a homogeneous field
thus may be solved as a problem of minimum of a function of a finite number
of variables, although this is not a general recommendation. In a number
of cases, proceeding from the specific features of particular problems, the
expressions of the control functions may be markedly simplified before
integration, and the final result is thus obtained by a shorter path.

§4.3. VERTICAL ASCENT OF A ROCKET IN THE
ATMOSPHERE TO MAXIMUM ALTITUDE

The present section is devoted to the solution of a problem presented
in Introduction (ExamplesI.1 and I. 2). This problem of rocket dynamics
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has been treated by a number of authors /4,10,13/. On the one hand, it
is of immediate practical interest for programming the thrust of sounding
rockets, and on the other hand, it may be regarded as a model of more
complex, two-dimensional and three-dimensional problems of rocket
dynamics. Proceeding from the considerations in the Introduction, we see
that solutions satisfying Euler's equation are not necessarily optimal. The
analysis that follows not only provides an illustration of the technique but
actually solves the problem in full form and proves the optimality of the
solutions.

Let us briefly reiterate the problem. Find the motion reaching the
maximum altitude among all the admissible motions satisfying the conditions

h=V; V= (X (h, V)~ P) — g(h);

m=—P|ec; (4.60)
HO)=hg; V(0)=Vo; m(0)=my; 0P oo,

where #, V, m are the altitude, the velocity, and the mass of the rocket;
X(h, V) is the drag; P is the thrust; g(h)is the gravitational acceleration;
¢ is the nozzle velocity.

As is readily seen, the equations of motion (4.60) contain the controlled
thrust P in linear form, so that the method of multiple maxima can be

applied.
The functions R and @ for this problem take the form

R=a/ +oy [ =X (0, V) = g (1) +Plm] e, Ple+ g (4.61)
O, Vi, )=k +o(t, my, b, V) —9(l, mo, ho, Vo). (4.62)

The equation of multiple maxima in this case reduces to

o= — 9y =0 (4.63)
m
and its general solution is
e=o.(t, h, NV, m)), (4.64)
where
NV, my=V —cn=. (4.65)

m

The physical meaning of the first integral n is the difference between
the actual velocity and the characteristic velocity of the rocket.
The equations of Problem 2 have the form

h=V; = ———”11—)((/1, V)—g(h). (4.66)

Seeing that the time of motion is not fixed and 71 is a monotonic function
of time (7 is strictly negative by (4.66)), we may change over to a new
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variable, dropping the equation for ¢{. The problem thus reduces to in-
vestigating the one equation

‘;iz -, Vo —f®, n, m), (4.67)
M ; X, V)Y+g

where
V=n+cln 2%,
m
Now, applying the maximum principle, say, we derive conditions which

exhaust the solution of the following Mayer problem: for every fixed n from
the interval (11, 7o)

FG@), mm)=inf f(hm),n, m) (4.68)
mH<m<mu
and at the final instant
5 (r,my, my)=0. (4.69)
By (4.69), V=0, i.e.,
= —clInZL
my

The limits my(n) and my(n) are constructed using the equation

dm _ _ Ple (4.70)
dn 1 ’ '

— X+ g

m

which is obtained by changing over to the new variable n in the original
system (4.60) and in the boundary conditions.

Lll sl L
%f 3
7 2

o, T b 0 o
m
My

A7)

s

r'/ 75

I

FIGURE 4,4
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The constructions in this case are entirely analogous to those considered
in §4.1. The upper and the lower limits my(n), m,(n) are the solutions of
equation (4.70) for P=0 which pass through the points (mo, no), (m1. M),
respectively. They are shown in Figure 4.4. Evidently, m(ho)=my,
my(n) =m;. The solution of equation (4.68) for the general case is shown
in Figure 4.4. Depending on particular boundary conditions and rocket
parameters, all the three cases shown in Figure 4.4, a,b,c, can be
attained. Case a corresponds to a combusion pulse in which all the fuel
is burnt, followed by coasting to mi(V1=0). Case b is a combination of an
initial pulse with the fuel burning to some #(n) then a stage of
throttled thrust #i(n) which satisfies the condition

9f g (4.71)
om
until all fuel has burnt out and coasting to V=0. Finally, case c
differs from the previous case in one respect only: the boosting pulse is
replaced by deceleration down to a velocity ¥V, corresponding to the
condition

m ()= my. (4.72)

If we are to remain strictly in the set of admissible solutions, the pulsed
solutions should be approximated with sequences of control functions with
the thrust increasing to infinity (curves 1,2,3,... in Figure 4.4).

Condition (4.71) corresponds to the dependence derived in Examples 1.1
and 1. 2 by differentiating the equation of the control switching line M=0.
This dependence, in its turn, is equivalent to the relations obtained for
throttled thrust programs in /2, 4,10, 13/.

It is readily seen that the solution of Problem 2 constructed in this way
satisfies the original equations and therefore solves the original problem.
This solution indicates that the singular control is optimal in the present
case,

§4.4. THE DEGENERATE PROBLEM OF THE OPTIMAL
POWERED ASCENT TRAJECTORY OF AN AIRCRAFT

Consider the motion of the center of mass of an aircraft in the vertical
plane under the combined action of the gravitational forces, air drag, and
engine thrust. The equations of motion are written in the form /7/

mV=Ph, V)—X(h, V, a)—mgsinb; (4.73)
mVi=P(h, V)a+V (h, V, a)— mg cos, (4.74)

where h is the altitude, V is the velocity of the aircraft center of mass,

m is the mass, 0 is the angle of inclination of the trajectory to the horizon,
a is the angle of attack, i.e., the angle between the wing chord and the
direction of the velocity vector, g is the gravitational acceleration, which
is assumed constant in magnitude and direction, P(h, V) is the engine thrust
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specified as a function of altitude and velocity, X and Y are the drag and
the 1lift on the aircraft, respectively:

X=c,(M, a) ————Q”;) 2 s,
(4.75)

Y =c, (M, a) L’Q’V— S.
Here g@(h) is the density of the atmosphere, S is the effective wing area,
M is the Mach number, defined as the ratio of the velocity V to the speed
of sound a(h) at a given altitude, ¢x and ¢, are the drag coefficients; the
dependence of the drag coefficients on the angle of attack for flight in the
dense layers of the atmosphere is expressed by the relations

¢ (M, w)= co(M)+b(M)a?, (4.76)
cy(M, a)=cy (M)a. (4.77)

Equations (4.73), (4.74) are written assuming sufficiently small angles
of attack, and we may therefore take cosa=1 and sina~a. These equations
should be supplemented by two further relations

h=V sin8; (4.78)

m= —B(r, V), (4.79)

where B is the per-second fuel consumption (a known function of & and V).
We will only consider ascent trajectories with

08 <. (4.80)

Horizontal flight with 6=0 is allowed in the limit.

The importance of this conditions for flight near the Earth is quite
evident. For many types of aircraft, it is highly desirable over the entire
section of powered ascent. Thus, using (4.78) and remembering that
because of the inequality >0 we may eliminate the time ¢ from the
equations of motion, we change over to the argument A and write

v _ P—X g

_— (4.81)
dh mV sin§ 14
d8 _ Pa+Y gctgh, (4.82)
dh  mV2sin ve :
dm _ ___8 (4.83)
dh V sing

If the aircraft motion is described by these equations, the three numbers
V, 8, & may be regarded as a phase vector, and the attack angle a assumes
the role of a control element.

The set V. of the admissible values of the control element a is defined
by the inequality

lel<v, (4.84)
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where the number y>0 is chosen from considerations of aircraft stability

and mechanical strength.
Suppose that at the initial time {=0 the aircraft has known altitude,

known velocity, and known mass,

h(0) =he; V(0)=Vo; m(0) =my. (4.85)

When at a given altitude A;> hg, the aircraft is required to have a given
velocity Vi>V,, i.e.,

V(t1)=V1 (4.86)

These boundary conditions define two sets Vy,(A=#he) and V,(#;) of the
admissible states of the aircraft at altitudes h=#ho and A=h;. Let us
determine the set V,(#) over the interval (hg, h). We assume that the mass
of fuel consumed by the entire maneuver is sufficiently small, so that we

may take
m= my=const. (4.87)

The angle 6 according to the above is restrained to the limits 0~760<x.
The velocity V should satisfy the inequalities

Vi(h) KV<Va(h), (4.88)

where the lower limit V;(#) is defined by the formula

Vih)y for V(>0 } (4.89)

V= -
® { 0 for V,(h)<CO

71(h) is the solution of equation (4.81) for a=*vy, § = En with the initial
condition V(Ag) =Vo. The upper limit is expressed by the equality

Vo(h)y=min [V5 (k), V& (4)]. (4.90)

”Y=Vz(lz),oa=iy,9=1—zr'

770~ /N\/“ 2, n
V=V,(h),ac=:'r,9= 7

FIGURE 4.5
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Here V,(4) is the solution of equation {4.81) for a==*y, 0= % which passes

through the point #,, V; of the ( A, V) plane (Figure 4.5), and Vo*(h) is
obtained from engineering considerations. Thus, considerations of
mechanical strength demand that the dynamic head does not exceed some
fixed value g :

e(nv?

5 <. (4.91)

The curves V=V,(h) and V=V,(4) are the projections of the '""maximum
braking'' trajectory onto the (k, V) plane. This "maximum braking' is

attained for vertical ascent ( =%) and maximum drag (o==vy).

Physically, the condition V,(#) <V<V,(h) means that an aircraft moving
at an altitude h with velocity V(4)>V,(h), say, will reach the altitude #,
with velocity V(h)>V,, thus violating the boundary condition V(&) =V,.

An element z of the set D of admissible trajectories is thus a com-
bination of a piecewise-differentiable vector function y(h)=(V(#), 6(h))
and a piecewise-continuous function a(#) defined on the segment [ho, Ai],
where they satisfy equations (4.81), (4.82) and conditions

y(meVy(hy '
a(R)€ V..

(4.92)

The last conditions are equivalent to the boundary conditions (4.85),
(4.86) and inequalities (4.80), (4.84), (4.88).

Among all the elements 2z (C D, find the one which minimizes the
functional

N
/ (z):mo—m(hl)zj > B an. (4.93)

sin @

Ao

In other words, we are looking for an admissible flight trajectory such
that the ascent from altitude hg to h and acceleration from velocity V, to
V) is effected with minimum expenditure of fuel.

Before proceeding with a solution of the problem, we have to make one
further agssumption concerning the properties of the right-hand sides of
equations (4.81), (4.82), which will further restrict the range of application
of the problem but significantly simplify its solution. We will assume that
within the limits specified by (4.84), the drag coefficient may be treated
as independent of the angle of attack:

(M, @)= c3(M)+b(M)a> == i (M). (4.94)

This assumption makes the problem degenerate (the control element a
is now a linear component on the right in the relevant equations), and it
can thus be solved by the special methods described in Chapter III

Thus following the general outline for the solution of variational
problems from the suff‘icient optimum conditions, we introduce a function
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(4, V, 6) which depends on the argument # and the phase coordinates V
and 6. We further construct the functions

Rn V, 0, a)=¢v[w~i]+

mV sin § 14
dop—— [Pot Y (1, V, a)—mg cos8] — EL 1) 4 o (4.95)
mV2 sin b V sinb
@ (Vy, 8y, V1, 0)=0(h, V1,0)—9(h, V,, 8o). (4.96)

We are looking for the vector functions (V(h), 8 (h), Ix—(h))e D and a
function ¢(4, V, 8) such that

Rih, V (B),8(h), a(h)]=p()= sup Rk V, 6, a) (4.97)
|
V,(Il)LlflVQ(h)
O<h<m
@ (V,, 60: Vi 6—1)2 inf @ (V,, Vy, 0, 6). (4.98)
Q<o
0<b <

In virtue of (4.75), (4,77), and (4.94), R is linear in a¢. We may thus use
the method of multiple maxima in order to find ¢(4, V, 8). If R is to be in-
dependent of a, we should have

wa(h, V, 0)=0. (4.99)

The general solution of this equation is
p=0(h, V), {4.100)
where @;(h, V) is an arbitrary function of A and V.
Inserting =g (A, V) in (4.95) and (4.96), we find

1
Vsing

ROV, 0 =[on T —p] i — o o (4.101)

@ (Vo 8y, Vi, 8)=09,(h, Vi)—9(h, Vo) (4.102)

Condition (4.98) is now satisfied automatically for any (4, V), since
® is independent of 8, and 6;, whereas Vo and V; are fixed.

The function R is now indeed independent of a, i.e., any @ maximizes
this function for fixed A, V, and 8. We see from (4.101) that by imposing
an additional condition on ¢=g¢;(h V),

%vP;X—ﬁzO, (4.103)

we make R independent of 0 either. Condition (4.103) imposed on ¢(4, V)
corresponds to a repeated application of the method of multiple maxima to
our problem, since 6 in Problem 2 is a control element.
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From (4.103) we have

mp (h, V)

- w___ .10
Piv P V)—X(,V) (4 4)
|4
o (h, V)=j;’% av; (4.105)
Vo
v
o1k, V)=mS ;Z—[[%(] av. (4.108)
Vo

The integral in (4.105) and (4.106)} is evaluated for fixed 4 from an
arbitrary lower limit V,. Inserting (4.104), (4.105), (4.106) in (4.101), we
find

v
__ mgph, V) o g
Rin V)=— TS0 +m£ & (P_X) av. (4.107)

The right-hand side of this equality is a know function of 4 and V.
Condition (4.97) for a maximum of R with the given ¢ defines the optimal
dependence V(h):

R(h, V(n)= sup  R(h, V). (4.108)
V. () <V <V, (h)

Here R(h, V) is given by (4.107).

It follows from (4.108) that the optimal flight program V(A4) for every
fixed h either coincides with one of the limit values V (k) or Vi(k), or is
a solution of the equation

Ry (, V)E—‘%[ (P{—g}s)-—v—]er%[PiX]:o, (4.109)

or, finally, corresponds to a vertical jump (in the (4, V) plane) from one
of these V(h-—0) to another ¥V (A+40) corresponding to horizontal flight. The
order in which these pieces are ''matched" is determined by equation
(4.108), which fully describes the optimal program.

FIGURE 4.6
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Let us now consider the engineering computations of the optimal
powered ascent trajectory proceeding from (4.108).
1. Numerical integration gives the solutions V;(#) and V2(%) of equation
n

(4.81) for the vertical ascent (6:0—), which pass through the points (fo, Vo),

and (h;, Vi), respectively. These solutions are plotted in the {h, V) plane.
The curve of constant dynamic head ¢ is plotted in the same plane,

emve:
g 4

E}

and using (4.88), (4.89) we construct the limits V() and Va(h) of the ad-
missible velocities.

2. For every fixed 4 € [hy, k], we use (4.107) to construct the function
R(h, V) on the segment [Vi(#), Va(h)]. The integral in (4.107) is obtained
by numerical or graphical integration. Figure 4.6 shows a specimen
function of this kind.

3. For every h, we choose a velocity V(#) corresponding tothe maximum
value of R(A, V) over [V,(4), Va(h)]. As a rule (see Figure 4.6}, the function
R(h, V) has two local maxima satisfying equation (4.109) (the subsonic and
the supersonic extremals, respectively); for h<A* (low altitudes),

Rk, VI(R)I>R[A, VI(#)], and for A>h* (highaltitudes), R[k, VI(A)]<R[A, VIi(h)].
There may, however, be more than two maxima.

]
! v,
I
|
|
_/!’/\ .
: Vi) 4
V=0 |
4 7777777
ny,=0 h "1 h
FIGURE 4,7

The optimal dependence V (k) corresponding to the function R(k, V) ob-
tained in this case is shown in Figure 4.7 for the initial conditions Ay=0,
Vo=0. For h<h*, )

V(h)=V(h),
and for A>h*,
V (k) =min[VI(k), Va2 ()]

This V(h) corresponds to the following flight conditions. The aircraft
first accelerates along a horizontal trajectory from V=0 to some velocity
V1(0) at the same altitude A=0 (in practice, obviously, the flight altitude
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is somewhat higher). The aircraft then climbs at the subsonic extremal
velocity V=VI(h) to the altitude hA=h*, where VI(h*)= V!i(A*). At this
altitude, the aircraft again assumes a horizontal trajectory, accelerating
from V!(A*)to V' (h*), covering the entire sonic range of velocities. Then
the aircraft climbs along the supersonic extremal V!(4) until the limit of
the dynamic head constraint is reached. After that it moves with constant
dynamic head ¢, again along the supersonic extremal, and finally
accelerating in the horizontal direction at altitude A; to velocity V.

A different optimal trajectory V(h)is shown in Figure 4.8. Sections of
this trajectory may correspond, in the limit, to vertical ascent of the air-
craft.

vin)

h, h heh

FIGURE 4.8

Inserting the optimal dependence V(h)in (4.81), we find the corres-
ponding optimal dependence 0 (k). _

The kinks in V(h) correspond to discontinuities in 8(#), Strictly speaking,
this solution, although exact in the sense of Problem 2, does not exist in the
original class D, since the functions 8(#) in this class are continuous.

A solution which belongs to D can be obtained if the above solution of
Problem 2 is replaced in the neighborhood of the discontinuity points by
solutions of the original system of differential equations with a=+vy for the
discontinuities where 0 increases and with a=-—v for the discontinuities
where 0 decreases.

The solution formed in this way should be treated as an approximate
solution in D, with the estimate |/;—I*|, where [;is the minimum value of
the functional in Problem 2, /*is the value of the functional for the new
solution. Since [;<7, where T is the exact minimum of the functional on D,
we have

o 1*| > [ T—1%].

If the left-hand side of this inequality is sufficiently small, the right-hand
side is also small, i.e., the approximate solution is sufficiently exact and no
better approximation need be sought. If the estimate |/;—/*|is large and
does not satisfy the required accuracy, the above method cannot be applied in
undiluted form to the solution of the particular problem, anditonly providesa
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qualitative description of the sought solution. In these cases, the result may
be used, say, as the first approximation in some successive approximations
scheme whereby the solution is brought to an end.

Remark 1. A similar procedure can be applied to find a trajectory
V(A) minimizing the maneuver time

Ry
T—_—S_—l dn. (4.110)
; V sinb

To this end, B(A, V)should be replaced with unity in expression (4.109)
for the function R(Ah, V).

Remark 2. The degenerate problem of the optimum powered ascent of
an aircraft considered in this section played an important role in the develop-
ment of optimum flight theory. It was first tackled by Ostoslavskii and
Lebedev /6/ in 1946, They obtained the subsonic extremal VI(4), known as
Ostoslavskii's curve. Miele /12/, by an ingenious application of Green's
theorem, proved the optimality of trajectories containing one of the extremal
branches and described the fundamental structure of the optimal trajectory
in the case of multiple extremals. The question of the optimal position of the
"jumps'" (the horizontal flight sections) between the different extremals re-
mained open, however. A complete solution of the problem by the method
described in this section was finally published in /5/.

§4.5. APPROXIMATE SYNTHESIS OF OPTIMAL
ANGLE-OF-ATTACK CONTROL FOR A
LIQUID-PROPELLANT WINGED AIRCRAFT

4.5.1. Statement of the problem. Equations of motion

The object of our analysis in this section is a liquid-propellant winged
aircraft normally flying in the dense layers of the atmosphere, at altitudes
up to 20km. The motion of the aircraft is investigated in the wind system of
coordinates under the following basic assumptions.

1. The aircraft motion is considered in a vertical plane in the atmo-
sphere of a non-rotating Earth with a homogeneous gravitational field.

2. The aircraft is treated as a point of varying mass, since liquid-
propellant engines are characterized by high rates of fuel consumption.

3. Since the engine thrust is assumed to remain constant, the aircraft
motion is entirely determined by controlling the angle of attack of the
wings.

4, The per-second consumption of the liquid propellant under conditions
of constant engine thrust is independent of flight velocity and flight altitude
/6/, i. e., the aircraft mass is a known function of time.

5. The engine thrust is constant, and the direction of the thrust vector is
along the longitudinal axis of the aircraft.

114



6. The polar curve of the aircraft is a family of quadratic parabolas
of the form

Cr="C(M)4c(M)a } (4.111)

cy=AM)a,

where ¢, is the drag coefficient, cxois the component of the drag coefficient
for zero angle of attack, c¢is a coefficient which allows for the lift-drag
coupling, ais the angle of attack, M is the Mach number.

The functions cx=[(M); ¢=f(M); A=f(M) are represented as polynomials
in M,

7. The aerodynamic forces on the aircraft are determined assuming
stationary conditions.

8. The limits of variation of the angle of attack are sufficiently small and

we may therefore take
. a2
sina = a; cosazl————2 .

The equations of motion of an aircraft in the wind system of coordinates
under the above assumptions take the form

/ =—'—IL— [P=X(V, i)—(0.5P 4 X, (V, h)a?— mg sin8]; (4.112)
. 1

6=7—n— {[P+Y (V,h)] a—mg cos B} ; (4.113)

h=V sine, (4.114)

where V is the flight velocity in km/sec, hk is the flight altitude in km, 6 is
the angle of inclination of the flight trajectory to the horizon in rad, Pis the
engine thrust, Xo(V, 4)is the drag for zero angle of attack, X;(V, h)o2 and
Y(h, V)a are, respectively, the induced drag and the lift.

The atmospheric density and the speed of sound as a function of altitude
are described by the following relations:

00—~
@=0.125 — -~

h
0==0.2105¢ 80, q(4n)=0.295 (for &> 11km).

; a(h)=0.340 V' 1—0.02255% .

In what follows a is considered as a control element, with the following
inequality constraints:

o Sa<ap. (4.115)

__We will construct an optimal synthesis of the angle of attack a(t, y)=
=a(t, h, V, 8) whichmoves any point of the space (¢, &, V, 8) intoa point &1, fuf, 011,
Vi1 with the maximum velocity V.

Here fi=100sec, A =19,000m, 0;=0.174rad.

This is clearly the dual problem of the problem of minimum time (or
minimum fuel consumption, since the dependence m(f) for reaching the point
ty, Ay, 841, Vi is known).
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Instead of a problem with a fixed right end point, we will consider a
problem with a free right end point for the functional

3
I=V i+ 2 0 (4 — )", (4.116)
im2

where Ag, 3 are some positive constants.

4.5,2. Changing over to new coordinates. Description of V,(¢)

The set Vy(¢) is defined as a parallelepiped in the y space, described by
the following inequalities:

ViogVv
f—e <0<t (4.116a)
E—x < h< ks,
where
V =0.000066¢2 +0.0027¢; (4.117)
§=10.0002163¢2— 0.03875¢ 4 1.92; (4.118)
7=0.0013£2 4 0.04824¢; (4.119)

vy=0.2km/sec; e=0.] rad; x=1km.

This definition of Vy(f) is dictated by tentative estimates of that region of
the (¢, y)space where the optimal trajectories corresponding to the sought
synthesis lie (we do not intend to consider this problem in any detail here).

Given this region Vy(f), we can change over to new coordinates (f, z) using

the transformations
y'=y'(t)+ =, (4.120)

where 7/ (f) are defined by (4.117) —(4.119).
The equations of motion thus take the form

d=f1lt 2,0 = {P— X (T 422, T 20)—

—[0.5P+ X, (V 42!, h+2%)] a2—mg sin (64 22)) —0.000132¢ — 0.0027; (4.121)

. _ 1 _ .
2=f2(¢, z,a)————(hzl)m(t) ([P+Y(V+2, 7+29)] e
—mg cos (84 22)) — 0.0004326¢ }- 0.03875; (4.122)

2= f3(¢, 2, a)=(V +21)sin (§ 4 22) —0.0026¢ — 0.04824. (4.123)
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4.5.3. Solution of the problem

By applying the method of Chapter IIl, we reduce the solution of the
problem to finding a function ¢(f, 2) which satisfies the following conditions
of an absolute maximum of the functional:*

P(t,z)= E[inf IR (t,z,0)= E[inf ][cpzf (t,z,a) o @)]=c(t) (4.124)
O (t),2,)=2"+ )\, (2} + 2%,)2 + ¢ (%,2,) = const, (4.125)

in other words, we have to solve the Cauchy problem for a first-order non-
linear partial differential equation.

No exact solution of this problem can be obtained in general. We will
therefore use the approximate method of optimal synthesis described in
§ 2. 3. The function ¢ is sought in the form of a polynomial

o(t,2)=2, (2" (E (%) (2 1,11, () (Z“)”)) (4.126)
1,=0 1,=0 0

Iy=

with unknown coefficients ¥i,1,:,(f). There is a total of 27 coefficients here.
We further demand that conditions (4.124), (4.125) be satisfied for all ¢ at
27 specially constructed reference points in Vy(f) (and definitely not every-
where in this region), which are obtained by combining the following values
of the variables z':

2L 0, v 2y;
2% —e, 0, g
2% —%, 0, =

(4.127)

In this case the reference curves — the loci of reference points — are
parallel straight lines zp =const, =1, 2, ..., 27, in the (¢, 2) space.

The function R may be represented in the following form, which is par-
ticularly convenient for minimization with respect to a:

R=Aa?+ Ba+|+C-+g, ) (4.128)

where
A= —gn [0.5 %+Xi(f,17+zl,/7+za)]; (4.129)
B=g, [—V—;—;l—(%qtr(t, V4 a, E+z3))]; (4.130)

Ctn [ = Xo(t,V 424 Tt 28)— g sin(T4-29 —
—0.000132¢ —0.0027 ] — [Lcﬁsﬂzi’
b V2! +
~+0.000432¢— 0.03875] b @u[(V 4 2Y) sin (B 22) — 0.0026f —0.04824]; (4.131)

¢,and @; are partial derivatives of the polynomial (4.126) which, after ex-
pansion of the parentheses and transition to a continuous numeration of the
unknowns, take the form

* In maximizing the functional, the condition of maximum of R in Theorem 1,1 is replaced by a condition
of minimumn,
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o=+ 92!+ §52 + 422 95 (1) -4 (2P + 4, (2P +-
+ 952122 +$g212% + $10222° + 1121 (27 - $p02 (27 +
41522 (FP + 912 P22+ 15 (212 + 45 (27P2° -
iy GR(PH ia (PP o (P (2 + 2272+
T V212122 (2% - 90p2! (221 2% -y (212 2%2° -
g2t (22P (2% s (222 (2%F ¥ (2P (2 22+ 9 (PP (22 (2. (4.132)

Minimization of the quadratic trinomial (4.128) in a under the above
constraints on a gives the following results, which depend on the value of
the trinomial coefficients:

P(t, 2)=infR(t, z, 0)=H (¢, 2) ¢ (1), (4.133)
where for A> 0,
% =Aal+Ba,+C a=aq, _2% <oy
g — — B2 o= L2 _B8 .
H = y +C a oA a, < N <ay; (4.134)
# =Aa+ Be,C  ad=aq, _2%>a2,-
for A <O,
#=Aai4Ba, +-C a=aqy (4.135)

H =Add4-Ba, +C a=a,,

and the coefficients A, B, C are obtained from (4.129) —(4.131).
Since {4.124) must be satisfied on the reference lines 2y, we obtain

the relations

op=—Hs(=1,2,. . .,27), (4.1386)

which constitute a system of first-order nonlinear ordinary differential
equations. These equations are not solved for the derivatives ﬂ;g, but these
derivatives enter the equations in linear form. Using matrix notation, we
may write (4.136) in the form

Ay = — 55, (4.137)

where A is the matrix of the system coefficients, #pis the column vector of

the free terms, ¢;is the column vector whose elements are the unknowns.
The solution of the above system of equations with the reference lines

Zp = const is obtained without considerable difficulty, since the elements of the

direct coefficient matrix A are constant at any time t& (to, t1). To obtain the

solution, we first solve the system for v,

b= — AT, (4.138)

and since the elements of the direct coefficient matrix A are constant at any
time, the inverse matrix A~! should be determined only at the very beginning
when solving (4.137).
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The initial conditions for 3 (f=1, 2, ..., 27) at time =%, are obtained
from (4.125):

B (4, 2D =214+ 1 (B — 222+ N (2= 222 + o(ty, 2], 22, 23)=C, (4.139)

or

O (b, 2}, 23, 2) =214+ [(Z2P 4 22825+ (=DP) - M (D)2 —
— 22523+ (2] + b2l 02+ 023+
405 (2])2 -+ 96 (23024 4, (2P + 223+
T 992123 - 4102325 - d1y2] (212 2] (2D
+ 41322 (232 914 (2] 25+ s (2]P23 -
+ g (257223 + b1 (2] (21 i (217 (2P +
+ g (2P (23 4 920212727 + 1212 (23 +
202 )(21P 2] - sl 211232} 1 0202 (RSP +

by P EP ) (U I EPEREP =0 (4.140)

Condition (4.125) in the above case may be exactly satisfied if we request
that

o A 1+, P A 0923 - LPH(Z?)Q + ‘sz(Z?)Q +

!
—+ 291,212+ 2052127 - 20,2 (2] 4 21 2] (232 4 2723 -
00y 23 (200 4 s (220 23+ Dyl iy (22020 -
- 29252122 (23)2 - 252] (271225 - 29, 21 (22 (232 =05 (4.141)

cI)z% =202} by — 2,28 - 20623 -+ $g2] + 1023 +- 201121 2
913 (2 4 1= 4 29162120 + 2 91y 2321 - 201521(22P +
+ 90212} 1 902} (27 + 2021 21 27 + P (27 21
20242123 (237 + a5 (2] (2]P - 26 (212128
+ 20y (212 2} (232 =0; (4.142)
(I’za =2)~2z§—2).2’zv3 F b+ 202349z 1 b0z} +
1
+ 201021 2] + 29132728 + 415 (21 - b6 (21 + 203 (2121 +
+ 2910 (27223 + 9mz] 25 -+ 205121 2323 + 9002} (20 +-

+ o3 (21027 4 20042} (22223 -+ 2005 (21227 23 + G (223 +-
+ 2y, (212 (222 23=0. (4.143)
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It follows from (4.141)—(4.143) that at time f=# the functions Vs (#;) should
take on the values

Gp= =M (2P — M (2BP, gp=1, G=24 27,
b=228, G=—)y, =Dy, (4.144)
4’5:!8‘:"1)9: I :‘%’27=0-

Here A;and A2 are some positive numbers, which are sufficiently large in
our sense.

The solution of system (4.136) with the above boundary conditions gives
the unknown coefficients ¥;3(f) of the polynomial (4.126) and thus determines
the sought approximate expression of the function ¢, its derivatives, and
finally (from (4.134) and (4.135)) the expression for a(f, 2).

Simultaneously with the integration of (4.136), we can integrate the
equation

A=supR(t, z2)—inf P (¢, 2) (4.145)
V!/ Vy

with the initial condition A(#)=0. This gives an estimate A of the
approximate synthesis at the initial time.

4.5, 4. A scheme for a computer

The problem was solved on the BESM-2 computer. The special program
used in this case consists of two parts: the direct program, which solves the
system of ordinary differential equations (4.138) and determines the error
in the direction from {;= 100 sec to {%= 30 sec, and the inverse program,
which is used to construct the optimal trajectory for a certain characteristic
combination of initial conditions.

The error of the method, the optimal trajectory constructed, and the
corresponding optimal program for the angle of attack a(t) are shown in
Figures 4.9 through 4.13. The following initial conditions were use: {,=30 sec,
V(f)=10.139km/sec, 0(f)=1.115rad, ~A=2.Tkm (z'=22=2%=0().

o L Al
a1 N I / 01
a1 § 201
.00/ - /l 2001
10001 l 2.0001
30 4 s 60 W 8 90 700 tsec

FIGURE 4,9
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Chapter V

OPTIMAL PROBLEMS IN THE DYNAMICS
OF COASTING IN THE ATMOSPHERE

The present chapter deals with the general variational problem of the
dynamics of two-dimensional (plane) motion in the atmosphere of a winged
aircraft with controllable aerodynamic lift; constraints on the coordinates
and the control element are taken into consideration. We will analyze a
typical case when the sought optimal control is degenerate (the case of
sliding control). It is shown that if the limit values of the control function
are equal in magnitude, the analysis of the sliding control reduces to
minimizing an integral functional without differential constraints. The
results of this analysis are then applied to solve the problem of the optimal
descent of an aircraft in the atmosphere with minimum added integral heat
in the critical zone of the aircraft. The method of multiple maxima de-
scribed in Chapter 1II is used.

§5.1. OPTIMAL TWO-DIMENSIONAL COASTING
OF WINGED AIRCRAFT IN THE ATMOS-
SPHERE IGNORING RANGE

5.1.1, Statement of the problem

We will consider the motion of a winged aircraft, with its engines
cut off, in the atmosphere of a spherical non-rotating Earth under the
following conditions:

1) equations of motion of the center of mass of the aircraft:

h=V sino; (5.1)
V==XV, c,)—gsins; (5.2)
é=]7pf(/z, v, cy)+(rE‘:r h———g)cose]; (5.3)
2) boundary conditions
1(0), V (0), 8(O)EB0); (a(ty), V (&), 8(H)C B () (5.4)
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3) constraints, for ¢ € (0, #),
h, V,0)EB(), c,Cley, (t, BV, ey (¢ b, V)] (5.5)

Here h, V, 8 are respectively the altitude, the velocity, and the in-
clination of the aircraft trajectory (the phase coordinates); ¢, is the lift
coefficient of the aircraft (a control element); Y(k, V, ¢,), X(k, V, ¢) are
the lift and the drag per unit mass of the aircraft; g is the gravitational
acceleration; rgis the Earth's radius.

Equations (5.1)—(5.3) are considered ignoring the horizontal flight range.
The functions X(h, V, ¢), Y(h V, ¢;) are assumed to be described by the
ordinary equations of stationary aerodynamics:

X (0, V, 0) =2 &2 (0, V)+5(, V, )
Sg oV?
YV, ¢) ————Gi QQ— Cy,

where @ is the density of the atmosphere, § is the characteristic area, G is
the aircraft weight; for every fixed A and V, b(k, V, ¢;) is a symmetrical
concave function of ¢;,. The variation of the gravitational acceleration g
with altitude is ignored. The last assumption, like the neglect of the Earth's
nonsphericity and its spin, introduce very slight errors in the computation
results, and yet greatly simplify the mathematics. These effects can always
be restored in full without any modification of the basic mathematical
apparatus. The change in aircraft mass associated with possible heat sub-
traction is also ignored. The functions A(¢), V(f),0(f)are continuous and
piecewise-differentiable, c¢y(f) is a bounded piecewise-continuous function.
These assumptions are commonly used in variational problems of flight
dynamics.

Let D be the set of the admissible motion programs 4(t), V(¢£), 6(f), ¢, (¢)
satisfying the various conditions and assumptions.

Our problem can be stated as follows. Find a sequence of motion
programs

{hs(0), Vo), 85, et} €D (5.6)
on which the functional

¢,
]:jfo(h, V)dt_‘—F(hO’ VO! 601 hl! Vl) el) (5-7)
0

goes to its least value over the set D.

The form of the functional (5.7), the constraints (5.5), and the boundary
conditions (5.4) depend on the particular problem being considered. They
will be improved and adjusted when necessary. Without loss of generality,
we may take ¢,;<Cy.
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5.1.2. Analysis of the optimum conditions

We will now investigate the function R for the given system comprising
the functional and the constraints,

R=¢,Vsinb—o, (X (4, V, c,)+gsinb) L
o [V OV, )T —gfeost | = o V) e (5.8)

If the function ¢(f A, V, 0) is given, the function R for some fixed ¢ h, V, 0
will depend on ¢, only, and its character, in virtue of the properties of the
functions X(h, V, ¢;) and Y(k, V, ¢;), will be determined primarily by the
magnitude and the signs of the coefficients of ¢y and 3. Suppose that the
following conditions are observed in some region of the (¢, k, V, 8) space:

o <G (5.9)

o [X (0, V, ey )—X (1, V, c,,)] — o5 %[y (, V, cp)—Y (h, V, c,)]=0. (5.10)

As is readily seen, R attains a maximum for two values of ¢, namely
cpi(t b, V) and cpe(f, A, V). If the sought optimal program belongs to the
relevant region and satisfies conditions (5.9), (5.10), it constitutes
degenerate (sliding) control with degeneracy & of at least 1. If conditions
(5.9), (5.10) are not satisfied, the maximum of R is attained only on one
cy, either inside the segment [cy1, ¢y2] or at one of the end points ¢y, Cy2.
The corresponding optimum control is of Euler type in the former case
and of boundary type inthe latter. We only investigate the conditions
corresponding to degenerate programs since, first, as we shall see from
what follows, they are quite typical of the problems being considered, and,
second, Euler and boundary optimal controls have been widely treated
in the literature /2 —5/.

Following the scheme described in Chapter III (the method of multiple
maxima), we will find the general solution of the partial differential
equation (5.10). To this end, we first determine the independent first
integral of the system

dv

E‘z _[X(hr Vv F.‘/:)'—X(hvvv C!/:)]; (5-11)
D vV, e =Y (1 V, e, (5.12)
e v 3 y VY ] v Yl
which has the form
E:G—}—SK(f, B, VYAV, (5.13)
where
1 Y1—Y
¢ __ 17772 . 5.14
K, b, VY= 238 (5.14)
X1a2=X(h, V, C.’Il!i(h) Vv t))) (5~15)
ylﬂzy(h’ Vv Clllv2(h’ V1 t)) (5.16)
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The general solution of equation (5.10) is an arbitrary continuous and
differentiable function

e=g (£, 1, E(4, 8, £, V). (5.17)
Inserting this function in expression (5.8) for R, we find

Ry=9,V sin0—ei {K (£, b, VI[X (8, V, c,})-+gsind]+
o [r v )+ (g )coso )= o V)t (5.18)

or

1{x,y2—Xg,_+

Ri=e1,V sin8—oy v Xy— X,
4K (t h,V)gsint— (Yri_g) cosBJ—fO(/z, V)+on, (5.19)
E

where V and 6 are related by (5.13)

Here h, E are the phase coordinates (the arguments of the function ¢,) and
V and 0 are the control elements (they are related by (5.13)). Using (5.13),
we can eliminate 8. The function R;for every fixed ¢ will then depend on
h, & and V, with V acting as a control element.

Further investigation of the function R, in general form does not achieve
any useful purpose. One of the ways for further solution is to change over to
Problem 2 and minimize the functional (5.7) with the following differential

constraints:

h=V sin6; (5.20)

L Xi¥e— Xy : V2
t= 7%, K(f,/z,V)gsme—Q—(rE g) cos 6, (5.21)

where

6=£—-§K(f, k V)V

As we could have expected, this problem is simpler than the original
problem since the order of system (5.20), (5.21) is 1 less than the order of
(5.1) —(5.3).

Problem 2 can be solved by the method of approximate optimal synthesis
(see §2.3). This method can be applied directly to the original problem (if
the consatraints on the phase coordinates are sufficiently simple), but it in-
volves integration of a system of differential equations of order m+n where
n is the order of the system of constraints, and m is the degree of the
approximating polynomial. Therefore, even if the order n is lowered by 1
only, the result is a substantial reduction of the overall computational work.
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Once Problem 2 has been solved, we have to check the applicability of
conditions (5.4}, (5.5) and establish that the solution indeed belongs to the
angle w(f). The latter is verified by inserting the solution h(f), V(f), 8(f) in
the equation

0=%[v}’1+(1+\~)yz+(‘i—2—g> cosB] (5.22)
E

which is then solved for v. If all the above conditions are satisfied, the
solution of Problem 2 defines the zero closeness function of the sliding
control. The original problem is thus solved. Otherwise, as we have seen
before, the function @ is constructed by a different method. Although in

this case the solution of Problem 2 does not solve Problem 1, it nevertheless
provides some information concerning the type of the sought solution. Using
this information, we can construct a reference solution which is subsequently
improved by some scheme of successive approximations, e.g., by the
method of approximate optimal synthesis for the original problem. A

clever choice of the reference trajectory reduces the region in which the
optimal synthesis is constructed and thus lowers the degree of the
approximating polynomial, As before, this leads to a marked reduction in
the volume of computations.

5.1.3. A special case of a symmetric constraint on
the lift coefficient

Let
lealt, by, VI=lepalt, b, Vi=cyumt, £, V). (5.23)

In this important case, the analysis of our general problem can be
continued much further. Since the function X(h, V, ¢,)is symmetrical, we
have

X(,Z, Vr Cl/l)zX(ht V: cﬂ?),

and condition (5.10) takes the form @, =0. This means that the function @
is independent of 8. The function R;takes the form

Ri=9uV sinb —o, [ X (h, V, cyiim(t, 1, V) gsind]— fo(x, V)+914. (5.24)

It follows from the structure of @, and R that sin 0 is the control element
in this case: it enters the expression for R in linear form. Problem 2, in
its turn, is degenerate and it can be solved by the method of multiple
maxima. We define @(¢, A, V) so that the coefficient before sin 0 in (5.24)
identically vanishes,

P15V — oy =0. (5.25)
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The general solution of the partial differential equation (5.25) is an
arbitrary continuous and differentiable function

Pr=9,(¢, N(4, V), (5.286)
where
n=h+- (5.27)
2

is the independent first integral of the system

dh _y.
w (5.28)
v .
= &
Inserting this solution in the expression for R;, we find
Ry= — 2 X (B, V, cy1im (4, 1, V)~ SO, V) -0, (5.29)

where h, V, and n satisfy (5.27). In (5.29), m is the phase coordinate, and
h and V are the control elements (they are related to 1 by (5.27)). We can
change over to one independent control element, % say, by expressing V
from (5.27) in terms of 1 and A :

V=V2gM—h).

As in the general case, it is better at this stage to pass to a modified
problem (we call it Problem 3) minimizing the functional (5.7) with a single
differential constraint

; \4
n=— X0V, cyrim(t, B, V), (5.30)

where i, V, 8 satisfy (5.27). Problem 3 can be solved by approximate
optimal synthesis, which in the present case virtually reduces to integrating
a system of first-order ordinary differential equations where the number of
equations is equal to the degree of the approximating polynomial plus 1
(one-dimensional synthesis).

The resulting solution (k(¢), V(¢)) of Problem 3 should be inserted in the
equations of Problem 2 in order to obtain sin 8. If the result satisfies the
constraints, (A(¢), V(f), 8(¢)) is a solution of Problem 2. We treat this
solution as before.

In practice, the constraints on ¢y and the phase coordinates in problems
of this kind are generally determined by physical constraints on overloading,
temperature, etc., which depend on the flight altitude and velocity and are
independent of time. In numerous problems the final time {, is not given
(e.g., the problem of the minimum added heat in the critical zone, which is
considered below). In this case, the right-hand side of equation (5.30) is
time-independent. Using this fact and further remembering that any
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physically admissible motion of the aircraft with the engine cut off, de-
scribed by equations (5.1) —(5.3), is constrained by the inequality 1 <0

(the total energy of the aircraft cannot increase with time), we may change
over from ! to a new independent variable 1, without distorting the physics
of the problem. Problem 3 is thus finally reduced to the problem of
minimizing the functional

e
[=— Vf"—U'V)_ dn- F (ho, Vg, 80, 1, Vi, 6)), (5.31)
-g—X(h, V,cy)

where
V=V2gMm—h),

without differential constraints and with inequality constraints of the form
(5.5) imposed on the free functions A(n), ¢y(n) and on the parameters 8,

and B1; in other words, the general problem is reduced to an elementary
problem of the absolute minimum of a function of a single variable for every
fixed n. Let ? (, h, ¢y) denote the integrand in (5.31). The solution of
Problem 3 then coincides with the solution of the equations

F1(n, B (), oy (r, M) =inf 3, &, c,), NE(My, Ny); (5.32)
h€B(n)
leyl < eylimhm)

F (h, Vo (ho, o), O, iy, Vy (7, ), B) =

Zi“f(hoy VO (IIO) nO)’ 60! h) V(hlv nl)y 61), (5-33)
(%o, B,) € By
(R, 8,) € By

where B(n), By, B,are the regions of the admissible values of 4, 0o, 0| defined
by conditions (5.5), or the regions of those A, 8y, 8; which are actually
attainable for system (5.1)—(5.3) under conditions (5.4), (5.5).

Although the solution of Problem 3 is elementary, we have to consider
its existence in the set D. The structure of the functional in Problem 3 is
so simple that it permits drawing some important conclusions concerning
the feasibility of the solution of this problem. Indeed, let us find the
maximum of the integrand in (5.31) with respect to ¢, for any admissible
fixed m and A. Note that the corresponding optimal value ¢, (n, h) depends
only on the sign of the function f¢ (&, m, ¢;). If f? <0, there is only one
optimal value of ¢;, ¢, =0. If f9>0, the minimum of }{ is attained for two
different values of ¢y,

C;—_—_":cylim (A, m).

In the negative case, the substitution c,,=c*y in the original system deter-
mines, in combination with the initial conditions, the unique solution of
system (5.1) —(5.3), i.e., a ballistic trajectory which does not necessarily
coincide with the solution (E(n), V(n), 8(n)) obtained under completely
different conditions.
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In the positive case, the solution of Problem 3 does not necessarily
satisfy equations (5.1) —(5.3) for cl,=c;. It only has to satisfy the constraints
onsin § andtolie within the angle ® constructed at each point of the
trajectory. In this case the solution can be realized by a sliding program —
a succession of control functions, each comprising alternating flight sections
with maximum and minimum angle of attack.

The denominator of the integrand in {5.31) for any values of the arguments
is definite positive, so that the sign of the fraction fI coincides with the sign
of the numerator, i.e., it is determined entirely by the particular form of
the function fo(4, V) (the given optimality criterion). Thus, if fo(h, V)= 1
(the problem of minimum descent time), the solution of Problem 3 is indeed
feasible.

If, on the other hand, f°(h, V) =—1 (the problem of maximum lifetime),
the solution of Problem 3, strictly speaking, does not exist in D and an
alternative method has to be used.

If fo(h, V) changes its sign, the solution of Problem 3 is strictly feasible
in that region of the (%, V) space where fo(A, V)>0.

5.1.4. Generalization to the case of additional
control elements

The preceding results are generalized without much difficulty to the case
when the angle of attack ¢y is not the only control element: other common
control elements are the angle of bank y and the drag coefficient ¢x. In
practice, Cxo can be controlled with the aid of braking apparatus in the form
of skirts, flaps or air brakes, and parachutes.

Let us consider the previous problem of minimizing the functional (5.7)
over the set D of flight programs satisfying the following conditions.

1. The equations of motion

h=V sint; (5.34)

V=—X#V,cx,c,)—gsinb; (5.35)

é::/—[)’(/z, v, cy)cosy—}—(v—z—g)cose}, (5.36)
"E

where A, V, 0 are the phase coordinates; ¢y, Y, €z are the control elements.
2. Boundary conditions (5.5), with free end time f.
3. Constraints, for ¢ & (0, ¢)),

(h, V, 0)CB;
(€, €) EQ(R, V). } (5.37)

The angle of bank y is either not constrained (—1<cosy<+1), i.e.,
equations (5.34) —(5.36) are in fact the projections of the three-dimensional
equations of motion on the vertical plane, or takes on the values 0 and n
(cosy=-1)only, i.e., the aircraft is truly constrained to perform two-
dimensional {or almost two-dimensional) motion.
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We will accept all the assumptions listed in 5.1.1,

Note that owing to the presence of the additional control element y, we
may treat the product Y (4, V, c¢,)cosy as an independent linear control
element Y, which assumes values inside the interval

[—Y —1")/ L

aim’ 21im

where Yﬂlim may depend on A and V.

The function R takes the form
R=g,V sin8—o, [X (1, V, cx,.cy )+ g sin 6] - oy —‘1/—[}’ +(‘i_2_g)cose]+<p,. (5.38)
E

Successively applying the method of multiple maxima and changing over
to a new argument, we end up, as before, with Problem 3 minimizing the
functional

_ SAIURY) AN+ F (g, Vg, 80, 1y, Vi, 6)), (5.39)

v
—g—X(h, Vv, Cryr L‘y)

I

7,

where

V=V 2g(M—h).

For every N & (M, No), the solution %(n), &xo(n), &(n) of Problem 3 is de-
fined by the condition

F1, B, Ceo(M), cy(M)=inf £3(M, 4, cx,, ), (5.40)
hE€B, (m)
(Cx0s Cp) €Qu{Bm)

where 9 (n, A, ¢, ¢y) is the integrand in {5.39). In other words, for every
M € (M1,M0), the values of %, &, &y are obtained as the point of absolute
minimum of the function f? (n, &, ¢xo, ¢,;) With respect to all the three in-
dependent variables h, Cxo, Cy.

Owing to the additional control element y, the transition to Problem 3
does not require any assumptions concerning equal limits of variation of
the angle of attack. In general, the solution of Problem 3 exists in D
when &,(n) is unique, provided that &,(n)=s=0.

Indeed, inserting %, &, & in the initial conditions, we find 6(n) and
then some function Ya (n) and the corresponding ''required" value (cos y):.

If [(cosy),| <1 and the solution (%(n), 6(n)) satisfies the boundary conditions,
we have solved the original problem. If the angle y is not constrained,

we may take cosy= (cosy);. If cosy is constrained to the two values £ 1,
ﬁ(n),?)(n) may be approximated in D by constructing a sliding program with
the basis control functions (€x(n), &(n), cosy:, 2), where cosy;=—1,c08y,=+1.
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§5.2. OPTIMAL DESCENT PROGRAM OF AN AIRCRAFT
IN THE ATMOSPHERE BASED ON THE CONDITION
OF MINIMUM ADDED INTEGRAL HEAT IN THE
CRITICAL ZONE

5.2.1. Statement of the problem

Consider the problem of aircraft descent in the atmosphere with minimum
added heat in the critical zone. The added heat is estimated by the

functional
4
1:5K0Q0'5 V315 g, (5.41)
[1]

where K, is a constant.
The admissible motion programs satisfy the following conditions,

The equations of motion

h=V sino; (5.42)
Ve=—X(#V,c,)—gsing; (5.43
hoe — LT ve

b= V[y3+<r5+h g)cose], (5.44)

where

Y,=Yh,V, cy)cosy.

Boundary conditions:
Alternative 1. Only the initial and the final energy levels are given:

t:O, n(o):nof

t=1#, 1) =m (5.45)

(transition from one energy level to another).
Alternative 2. The initial values of the phase coordinates and the

final value of the energy level are given:
t=0, hO)=hy; V(0)=Vyor 0(0)=0; M="Ny. (5.46)

In both alternatives, {, is free.
The sought optimal program is expected to satisfy the following

constraints:

1) ey < Cyrims (5.47)

2) > g (5.48)
1

3) [N(hV, cy]zz;[XZ(h, V,e) 12 (h V, e )] <N s (5.49)

4) q.(4V, ) < g1 . 1im- (5.50)
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Inequality (5.47) is an engineering constraint on the lift coefficient; ¢,1im
may be identified with ¢yni1, say. In (5.48) him is the geometrical altitude
limit, i.e., the ground level. Relations (5.49), (5.50) impose constraints
on the total overload ¥ and the heat flux g, at some critical point on the
aircraft surface. The limit values of these parameters are fixed from
structural strength considerations and from safety requirements for the
crew and the instrumentation. It is assumed that for any fixed hand V,
q.(h, V, ¢y) is a symmetrical and monotonic (on both sides of the origin)
function of ¢y.

From considerations of problem solution, constrainsts (5.49), (5.50)
are better written in the form (5.5). Note that both N? and ¢; for any fixed
h, V have a minimum for c¢,=0.

Condition (5.49) is then equivalent to the following two inequalities:

(Voo SN2 (5.51)
le) < e, (5.52)
where c;(h, V)is the positive solution of the equation
N2k, V, ) =N}, (5.53)
for any fixed # and V which satisfy (5.51). Clearly, for other h, V, the

solution ¢, does not exist. .
Condition (5.50) is similarly equivalent to the following inequalities:

(@eym0 <Gy (5.54)
Cy<ﬂ;.(’l, V)y (5‘55)

where c:/'(lz, V) is the positive solution of the equation
9. (1, V, c)}=¢, 1. (5.56)

The functions (N?(h, V)) -0 and (¢;(h, V))c,~0 decrease monotonically
with increasing altitude and increase monotonically with increasing velocity.
Therefore (5.51) may be written in the form

h> B (V), (5.57)

‘Y ge=9rtim
N=HNy;

ft=(3tlimdey=0

N= (”lim)t‘ysﬂ V=const

Mlim |

FIGURE 5.1
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where A*(V) is the solution of the equation
(N2(, V))eymo =NZ, (5.58)
for any fixed V, and (5.54) may be written in the form
hz k7 (V), (5.59)
where A**(V) is the solution of the equation

(q[(h, V))Cy=-0 =qt.1j_m (5.60)

for any fixed V.
Summing up, we can write the various constraints in the following form

(Figure 5.1):

R1im- for hy,>H, A*°

B2 h(V)={p*(V) for &K">h, r** (5.61)
W)  for A™>h, i
eyum  for cpim<le, ¢
lel < eun(h, V)={ey (0 V) for i <Tcuum, € (5.62)
¢’ (h, V) for /< cym, c;
—Y(n V, )<Y, <Y (B, V, cpp), (5.63)

and in this form they will be used in what follows.

Note that the physical meaning of the constraints and the corresponding
classification are of no consequence from the point of view of the method
of problem solution. We are merely concerned with the formal classification
of constraints, which distinguishes between constraints on the phase
coordinates (group (5.61)) and constraints on the control elements depending
on the phase coordinates (group (5.62)).

We can now present a rigorous formulation of the problem, denoting by
D the set of admissible motion programs satisfying the above conditions:

Find a sequence of programs {(&s(f), Vs(t), Bs(f), ¢y s(t), vs(t))}=D on
which the functional (5.41) goes to its least value over the set D.

5. 2. 2. Solution of the problem

Seeing that the time ¢ is free and constraints (5.61) —(5.63) do not depend
explicitly on time, we will solve Problem 3 corresponding to the original
problem. We thus minimize the functional

N
Q0'5V3'15

I=—K, an, (5.64)

— X(h,V, )
£

Mo
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where
V=V2g(Mm—n)

under constraints (5.61), (5.62). The minimum of the functional (5.64)
yields a certain solution %(n), &,(n) on which, for every fixedn € (1, no),
the integrand in (5.64) attains its minimum under the same constraints.

Since in our case fO(h, V)>0, the minimum of the integrand for any
fixed n and 4 is attained for |cy|=cyp (A, m). We now insert|cy] =¢ypb in
(5.64) and find the minimum of the function

0.5173.15
s = 7

—X(,V, h,
2 ( cyp(h,n))

(5.65)

x on the set A=hn(n). Here hp(n) is obtained by
7=const \/ transforming #Ap(V) to the new coordinates (see
Figure 5.1).
\/ Figure 5.2 shows some typical curves of the
~N— function x(h) for several fixed values of 1. The
minimum of %(k)is attained at the kink point Aopt,
h which is precisely the point of transition from
FIGURE 5.2 one ¢y, Cyiim, to another ¢ or c’; . In other words,
this is the point where

N(hy m, Cylim )=th

or -
q(h, M, ¢y1im Y= 9r1im-

The solution of Problem 3 for the two alternative sets of boundary
conditions thus has the following form (Figure 5.3).
Alternative 1,

E(n):{"opt(”) for hopt(N) > hiim
Mim  for  Rop < hym. (5.86)

1[0, Mol

Ut} o ﬂn"]

FIGURE 5.3
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Alternative 2,

f=f1g¢ for M=",
h={hopi(h) for hop(MZ Miim. 1€ (y,, Mp) (5.67)
Riim for Aopt<Hiim-

For both alternatives,
el =€y 1im-
We will now consider the existence of the solution of Problem 3 in D,

i. e., the actual construction of the sought minimizing solution.
In equations (5.42) —(5.44) we change over to a new argument 1:

r— &S0 g o) 5.68
k X(h,V,cy) 7H0 B 6, <) (5.68)
Ve
g[Ya+(r——g)cosB]
L N ST e n e, o). 5.69
6 VX (h,V, ¢y) 72, ) ( )

_ The solution of Problem 3 is feasible in D only if the direction (1, &M,
A(n)) in the (A, 6, n) space, for every %, lies within the angle ® spanned by
the vectors

al=[1’ f(ny 7{1 ’6, Cylim)]
and

Qs 2[11 f(na Ev ‘6; _C!/]a
where f={(f1, f?).

In other words, the substitution of _é’(n) in the equation
0 M=V, &, 0, —cy ) H(L—=v) 12N, &, G+ cyy) (5.70)

should give v which satisfies the constraints 0<Sv<1.

At the same time, the functions 7Z(n), €(n) may be discontinuous. The
values of %/, 8”7 at the discontinuity points are not bounded, and the direction
{1, %, 8] therefore a priori does not lie within the angle ® since the functions
f2(h, 8, 1, =y are bounded. In this sense, the solution of Problem 3 does
not solve at the same time the original problem. However, using this
solution as a guide line, we can construct some program (1), 8(n), ¢,(n)
from D which can be regarded as a potential optimal program.

Note that under the above constraints, the condition 0<v<1 is generally
satisfied on the continuous sections (%(n), 6(n)) for a wide range of 7,
with the exception of very small 1, when motion along Zqp(n) requires
smaller values of Y, than the Ya, available.

A potential optimal program constructed in this way is shown in
general outline in Figure 5.3. It comprises flight sections corresponding
to the limiting values of Y. and sliding control sections, with the control
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switching between the two limit values of Y, along the %(n)line. In
particular cases, some of the sections shown in Figure 5.3 may be missing.

5.2.3. Estimates of the solution

Since the solution f(n), 8(n),c,(n) constructed above is only a potential
optimal solution, it requires further verification. One of the possible
techniques is to verify the sufficient conditions of a local minimum /1/.
Another approach is to improve the solution by successive approximations
(e.g., by approximate optimal synthesis), using the available solution as
the first approximation (a reference solution),

We propose to check the potential optimal solution by comparison with
another solution (A(n), 6(1), ¢y(n)). which does not necessarily belong to D
but on which the functional is a priori known to attain a value not exceeding
its exact lower bound on D,

Let

(h (n)! ] (T])r Cy (n)) =z,

Then

I(z) <inf1. (5.71)

By (5.71) we clearly have

1= 1@ —inf I|< |1 ) — 1 (zl=ac.

Thus Al provides an estimate of the solution, and the accuracy of this
estimate clearly depends on the particular function 2. chosen.

We can choose 2., say, as the solution of Problem 3. For boundary
conditions in Alternative 1, this estimate is expected to be fairly accurate.
For boundary conditions in Alternative 2, on the other hand, this estimate
may prove to be too crude, since in this case the potential minimizing
solution may markedly differ from 2. over some long sections (see
Figure 5.3).

A more exact estimate can be obtained, but this requires some additional
construction.

Using initial conditions (5.46), let us consider the solution of the system

I
of six equations (with the argument Q= 5'90-5V34‘5dt)
b

' h,__mm<Vsinﬂ )
L "y»'l-e QO.Sv3.15 ’

. . V X,k ¢y
=min{ —— — 222 = 3.
" cy.h.e( g EVERE )v
v2
1 Yc+(r——g)cosﬂ (5.72)

6, = min - ME /7 ;

L”a-‘y'ﬂ-" v PUEVERE]

' V sin @

=max( )

u g8\ @053 18




The minima and the maxima of the corresponding functions are located
for every fixed @ in the region

— Cytinklt, M) < €y < Cypyd s M)

—Y (h,m, c,,un} <Y, LY (1M, ey )i
h Q) <A < hy(Q); (5.73)
M(Q) <N < M(Q)s
9,(Q) <6< Q).

In virtue of the right-hand sides of equations (5.72) (see Appendix), v.{(Q)
is some lower limit value of n (which lies below the exact lower limit of g
for the original system) for every fixed Q, and its inverse function is some
lower limit of Q for fixed n (Figure 5.4). We continue the solution of this
system to its intersection in the plane (A, 1) with the line E(n),n. The
quantities relating to the intersection point are denoted with an asterisk *,
A similar construction can be carried out at the left end point of the interval
{1, o) until Ay (ny) intersects %(n) at the point n**

Exact limit

(@)
q
FIGURE 5.4
I. is taken in the form
Y. ERE
=K | aAQ+2aQ"+ | v - - 9}- (5.74)

? Xk, V,eyin)

*
i

The estimate is obtained as follows:

Ae=|I.—1{®)]| (5.75)
or
A=A (5.75a)
A=
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5.2, 4. Numerical example

As an example, we computed the optimal descent of a hypothetical air-
craft with the following specifications:

weight G= 5000 km, wing load %= 153kg/m?2
The polar curve of the aircraft is

Cx=01+1.83 |sin3a|; (5.76)
¢y=--1.83sinacosa.

(Expressions (5.76) are borrowed from /6/.)

% km
a0 =
£0 \""- ”1im-z
] - L]
\<Nlim"; M~
- N -
\ I
@ Y
A7A7 77
g w0 w0 t; 00 400 900 ¢t
Vkm/sec
6 ‘\ \\ l
\\ \'\ Mif

100 200 t+ 300 490 500 ¢, t
790 200 ty 300 400 500 €1 t

0
o o\ | -
v \‘—}LI <\
-0.3

— \

Qa q ¢ T
3-710°%|370" | | | i‘
2.16%]2-18" ad. im=5) 7 ,’/__'_/’ \Q(Nih_-n:'z) I

M\
10, 1011 f' -
7r . \ \‘\ /'Q (Nlm_;-i)_
ol o K& s |

700 200 300 . 400 J00 t sec
Q=Q°'5V"15 kg *° m' S sec?-15 Q’s ddt kg?® m' B sec 71
]

FIGURE 5.5
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The following boundary conditions and constraints were used:

Ng=2.93-10°m; hy=280-10*m; 6,=0;
711=15-103m; (5.77)
]Vlim:5; 2 Cylim— 0.645.

No constraints were imposed on the heat flux. The density of the atmo-
sphere was taken in accordance with the SA-64 standard atmosphere model.

A km . [ L

60 \'\T_~—~ . Lim ]

R
=~ N, =5 T

40 - \Y lim

2 i B

0 Xkm
A km 000 2000

P ) Ml

8 P e - t

w4 all LM J‘

2 o

0 lgm

0° 2-106 J-108

FIGURE 5.6

The computations were carried out on the BESM-2 computer. Equations
(5.42{—(5.44) were integrated in original form with the argument f.

The results are plotted in Figures 5.5 and 5.6.

Figure 5.5 shows the time variation of the phase coordinates #, V, 8 and
the variables @, Q for M;;=5.2. Figure 5.6 shows the auxiliary character-
istics of the optimal program: the trajectory in the coordinates h, x, where
x is the horizontal range, and h, . Figure 5.6 also gives the function

hi(nL). The following estimates are obtained for this program.
Alternative 1.

A=0.

Alternative 2.

Nip=5; A=4.1%;
]vlim: 2; Z: 0.6%.

5.2.5. Practical realization of the optimal program

In the particular problem considered in this section, the limits for the
variation of the angle of attack are assumed to be equal in absolute value.
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The sought solution in this case can be realized in more than one way. Let
us consider in some detail two realizations of the optimal program,

According to one technique, the angle of attack is controlled by altering
the angle of pitch while maintaining a constant angle of bank y=0or y=m.
The sections with Y,=—Y;por Ya=Ypmay be attained by taking ¢,= —cy;;
or ¢y=cyim respectively. Sections with —¥;,<Y,<¥j,in this case are
sliding control sections and are attained by switching between the two limit
values of the angle of attack.

According to another technique, the banking of the aircraft is controlled
so that ¢;=c¢yim or ¢y=—Cy1im. A number of alternative versions of this
technique may be considered, corresponding to different programs of al
altering the angle of bank. All these programs are characterized by the
same ''mean'' projection of the lift on the vertical plane, which is equal to
Y., whereas the ""mean'' projection of the 1ift on the horizontal plane is
variable. One of the possible programs may maintain the instantaneous
angle of bank in accordance with the relation

cosv=:,’a, (5.78)
lim

another program may rotate the aircraft with a variable angular banking
velocity, a third program may induce oscillatory movement of the aircraft
in a certain range of banking angles, etc. This freedom of banking control
creates wide possibilities for lateral maneuvers.

With the first control technique, the sliding

control section is realized by switching over

Yo, between the two limit angles of attack in flight.
j_Aj An elementary switching cycle is shown in
0 T Figure 5.7. To assess the departure of the real
5 ¢ values of the functional from its lower bound,
let us consider the expression of the functional

for ¢,=cyp (B m) The integrand x(k, n)for

ae ! ! At every fixed 1 depends only on the altitude h.
Iz T 'i—- T. The deviations of the functional from its
TC minimum are determined by the altitude
deviations
Ah=h—F(n)
= Tc
2 for all
FIGURE 5.7 NEM1 Mo).

Let us estimate the magnitude of these deviations
for different number of cycles. To this end, we introduce the following
assumptions. In the range of altitudes corresponding to the permissible
deviations Ak, the velocity V and the density ¢ are taken equal to the optimal
values V(n), e{(n); cos8=1;sin8~86. Then in the relevant range of altitudes,
for fixed 7,

X=X= const;
Y =V =const,
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We further assume an exponential density distribution in the atmosphere,
o= ") 8=131.10""m"™!
Under these assumptions, the equations of the relative deviations
Ah=h—"%, A6=0—08 take the form
(aR)="T728;

o (5.79)
(46) =5 (£Y —¥5)

where
Y,=wW (Z, r/, z‘y1m) + (! —v)Y(’;E, V_;ylirr)'

The change in velocity during a single cycle is ignored.
The integrand x(n, ) in (5.65) may be replaced in the relevant neighbor-

hood of % by the expression
% (N, h)=x%-F%,Ak, AR>O, (5.80)
where, as is readily seen,

;h=‘;5(‘72);

81
§(V2)= a?—;”;; a=0.5; b="0.007. (5.81)

Hence we easily find the relative deviation of the functional from its
minimum over a cycle
Te/2

ZF_E(VZ)_ jAh(t)a.’l | (5.82)

Let us evaluate the integral in (5.82) using equations (5.79). Integration
f (5.79) over At (see Figure 5.7) gives
sh=(r =¥ ), 0<ar<r,
2 .
A/z=(V——Y5)T7—f—(Y——VS)r (Af—r)—(y—}"s)(“;—rﬂ’
T<ar< e,

where

SR ES

4 Y
Inserting the expressions for Ak in (5.82) and integrating, we obtain

= (R r—ro(F) +

Al

F = )(557) (FEEY - R ()
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FrorESEY (228,

Y Y
Tc is related to the number of switchings by the equality

_ta=h, A _b—t

¢C oy 2T

The total deviation &/ is thus expressed by the relation

I N
()
g A\ ) ﬂ) ALy
T: [—: A[ : [ . (5.83)
1

1%
I
’ /
6 = A
4 ”llr?l\ ,/
o ,}/ M2
0 el 1

70 20 Jg 40 30 T¢ sec

FIGURE 5.8

The dependence of 8//] on T. is shown in Figure 5.8. It is readily seen
that a program with T¢=~ 30 sec is already sufficient to provide an adequate
approximation to the optimum. The transition time between the two limit
values of ¢, apparently can be ignored in comparison with 7.

The deviation of the functional from the true minimum in the second
technique depends on the particular banking control program. It seems
that, irrespective of the particular program, banking control invariably
gives a better realization of the optimum for the same number of cycles,
since in this case |cy|= c,ypat any time. The program fixing the angle of
bank in accordance with (5.78) attains the exact lower bound of the functional.

5.2.6. Remarks concerning a controlled
drag coefficient

We will now see how the solution of the problem is affected if ¢y is
controllable within certain limits

€x0 min < €x0 €0 max,

which are either imposed by engineering constraints or are functions of
h, V, and ¢,, as it follows from the condition

N(h V, cxo, ¢y) <Nijm : (5.84)

(the constraint on the heat flux is disregarded).
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Condition (5.84) is better written as a system of two constraints

N(h, V, 0, 0)< Nijjm; (5.85)
Cx (c-l'o’ C.‘I)<€xlim(h’ V)» (5.86)

where cqaim(h, V) is the solution of the equation
N2(h, V, ¢ (cur C))=Nim- (5.87)

Let us investigate the integrand in (5.64) under these constraints, taking
cxo to be variable. Since >0, the minimum of the integrand with respect to
Cx0, €y corresponds to the maximum with respect to ¢x, ¢y of the function

X(h, V, cx(cx0 Cy)),

which, for any fixed h, M, is attained on the maximum value of ¢x(¢xo, €y),
i, e.,

cx(€x0, €y) =Cxtim(h, ).
Equation (5.87) may be written in the form
Mim
_:S_ ( V” E ’
o L@ -)]

The function cx(cxo, Cy) attains its maximum, under constraint (5.87a),
for Cxo=—Ciomax(#, V), where (i omax is either the solution of equation (5.84)
for any fixed A, V (in this case ¢,=0) or the upper engineering limit
Cxomaxf (in this case |¢y| is obtained from (5.87a)).

Inserting the results for cx and ¢, in the integrand in (5.64), we find that
the function #(m, #) attains its minimum on hA=7%(n), which is determined from
the condition

(5.87a)

f

ci(en )Ty

Nz(hv V’ €0 max f> Cylim)z leim- (5'88)

We thus see that the optimal programs with controlled ¢x are essentially
the same as with a fixed ¢xp. If the fixed ¢x coincides with ¢xomm for the case
of controlled ¢xo, the altitude %(n) is evidently greater than with fixed cxqo.



Appendix

Estimating the limits of the admissible phase
coordinates for systems of differential equations

Consider a system of differential equations

F=r'yh R, e
!;,2=f2([’ NN 3 (5.89)
_l‘/"‘:f"(t, yl’ y2’ - e, YT, u)v

with given initial conditions
§ =y PO=g . . .. 4" (O)=4b (5.90)

The functions f! (¢ y!, 2, ..., y", u) are assumed continuous and differen-
tiable in all their arguments, u(f)is an r-dimensional vector function (control
function) whose values lie in some region Q{4 y', 4% ..., y") in the
r -dimensional space.

We use (5.89) to form a new system of 2n differential equations

yi: inf fl (tv yli y2, ey y", u),
L
go= sup Sl g oA .., g )
vyt .y
yi=inf P2, 4l 5 ..., yn n) (5.91)
y‘,_l/’,...,y",u
yo=sup L 4 4 ..., g, u)
y‘,y’.....y"u

The maxima and the minima of the corresponding functions lie in the
region

gLt < gt < gyl
yﬂﬁ<ﬁ<£m;} (5.92)

gL <y <yl l

It can be shown that the functions y[’J (t), y¢ (¢) corresponding to the
solution of system (5.91) with initial conditions (5.90) constitute certain
upper and lower limits (not necessarily exact) of the functions y! (f)
corresponding to all the admissible solutions of system (5.88) with the
same initial conditions.

We will first examine the question of limits for the case of one first-
order differential equation. The following proposition holds true.
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Lemma. Consider a first-order differential equation
§=r(, y, u), (5.93)

where u is an r-dimensional vector function (a control function) taking its
values in some region Q(f, y) of the r-dimensional space. The function
f(¢t, y. u) is assumed to be continuous and differentiable inallits arguments.
The initial condition y(0) =y, is given. The solution y(¢) of the equation

L ueng.y)f(f’ 7)) (5.94)
with this initial condition provides the exact lower limit for all the ad-
missible values of y and every fixed ¢ [0, #;] for the solutions of equation
(5.93) with the same initial condition.

Indeed, the necessary conditions for a minimum of y(¢;)=y, in the
Mayer problem for equation (5.93) are

Ry=0—4¢=—9f,, v=09,(, yL); (5.95)
R(t, y, W)= sup R(t, y,, w); (5.96)
uz€Q(t,y)
@y, =0 ¢(f)=—1, (5.97)
where
R, g, w)=o,f (!, y, 0)+94 (5.98)
D4, y)=n+elh ) (5.99)

@ (¢, y) is an arbitrary continuous and differentiable function.

It follows from (5.95), (5.97) that ¢(f) <0 everywhere on (0, #,), being
a solution of a homogeneous linear equation which is negative at least at
one point. But then (5.96) is equivalent to (5.95), which together with the
initial condition y(0)=y, defines a unique solution of the equation. Since
(5.95)—(5.97) are necessary conditions, the unique solution is of necessity
optimal. Thus y (f;) is the absolute minimum or the exact lower limit of
y(t) for equation (5.93) with the given initial condition. Since #>0 is
arbitrary time, y;(f)is the exact lower limit of all the admissible values
of y for any £.

It is similarly proved that the solution of the equation

= sup f(t y, u) (5.100)
u€Q(t,y)

with the same conditions is the exact upper bound of y for every fixed
t>0.

Let us now return to systems (5.89), (5.91). If each equation from
(5.89), say the equation for y!, is considered independently of the other
equations, it has the same form as equation (5.93), with u(¢)and the phase
coordinates except y! treated as the control functions. The first and the
second equation in (5.91) have the form of equations (5.94) and (5.100) in
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relation to (5.93) and they therefore determine the upper and the lower
limit of 4! if the region of the values of y! where the maximum and the
minimum are sought coincides with the region of the admissible values of
y! or encloses it.

The initial region of the coordinates is given: in our case this is the
point y! (0)=yl. At every succeeding time, equations (5.91) define the
limits of the admissible values of y!, so that (5.92) define the region of the
admissible values of the variables at any time, etc.

Hence it follows that the solution of system (5.91) defines the limits of
the components of the solution of system (5.89) at any time.
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Chapter VI

NECESSARY AND SUFFICIENT OPTIMUM
CONDITIONS FOR DISCRETE CONTROLLED

SYSTEMS

§6.1., STATEMENT OF THE PROBLEM

Consider two quite general sets Y and U with elements y and u, respec-
tively, and a finite natural sequence A= (0, 1, 2, ..., N). To every i CA
corresponds a subset V(i) of the direct product Y X U.

We further introduce a set D of the pairs y(i), u(i)of functions of the
integral argument i defined over A, such that for all i C A

(y(), eV (@); i=0,1,..., N; (6.1)
yE+ D=1 y@), u@]; i=0,1,..., N—1, (6.2)

where the function (operator) f(i, y, u) is defined over the direct product
AXYXU, mapping it onto the set Y. It is assumed that D is nonempty.
An element y is said to be a state of the system or its phase state; u is the
control. The former differs from the latter in that it enters the constraint
equations (6.2) with different values of i.

We define a functional on D,

N
1= Foli, y(@), u (@), (6.3)
i=0

where fO(i, y, u) is a functional defined on AXYXU. Let the functional / be
bounded from below on D, i.e.,
inf/=d >—o0.
D
We seek a sequence {ys(f), s({) } ( D which minimizes the functional [/
over D, i.e., a sequence such that /[ys(i), us(i)]—d for S—oo. In partic-

ular, if there exists an element (y({), @({)) €D satisfying the equality
I[7 (i), ©(i)]=d (this element is called the absolute minimizing solution), the

problem reduces to the determination of this element.
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§6.2. THE OPTIMUM PRINCIPLE

We define an arbitrary functional ¢(i, ¥) on the direct product AXY and
use it in the following constructions:

R(, y, wy=¢li+1, f, y, W)—e(, y)— S0, y, a) (6.4)
p()= sup R(, y, u); (6.5)
(y.u)EV (L)
q)O(y’ ll)z-'—CF[l, f(O, Y, u)]+f0(01 Y, ll); (6.6)
O, (y, u)=¢(N, y)+ (N, y, u);
my= inf ®,(y, u); my= Iinf @(y, n. (6.7)
(y,u)EV(0) (g,u)EV(N)

We will prove the following theorem.

Theorem 6.1, (Optimum principle). Consider a sequence
{ys(l), us(i)} ¢ D. For this sequence to minimize the functional / over D it
is sufficient, and if for all iC Athe functional [o(i, y, u) is bounded on V(i) for
every i € A, it is also necessary that there exists a functional @(i, y) satis-
fying the following conditions:

1) a function p(i) expressed by (6.5) is defined on{l, 2, ..., N—1};
2) for all i=1, 2, ..., N—I1,
Ri, ys(@), us @] - p (@), S~ oo (6.8)
3) B d)O[_l.Z.-S‘(O)v uS (0)]’_*,‘"0' } (69)
Dy [{ys (NV), us (N)] > my, § oo,

Remark. If the sequence introduced in the theorem has the form
ys{i)=y(i), us(i) =u(t)for all S, the condition of convergence in (6.8), (6.9)
is replaced by equality and the pair 7 (i), #({) € D satisfying the conditions
of the theorem is the absolute minimizing solution.

Sufficiency. We will use the lemma from §1.2. The set M of this
lemma is identified with D, and the set N is identified with a new set E which
satisfies all the conditions of D except equalities (6.2). On this set we define
a functional

N—-1

Lly(@), u@]=4(y(0), 2(0) + P (y(N), u(N)— X RIi, y(@), u(@]. (6.10)
i=1

For y(i), u(i) € D, L=1I. This is quite obvious if we rewrite (6.10) in
the form

N
Lly @), 2 @)=+ Y oli g@]— ¢l fE—1), yli—1), a@—1]. (6.11)
=1

Suppose that there exists a functional @(i, y) such that the conditions of
the theorem are satisfied on some sequence {ys(?), us(i} } C D. This sequence
then minimizes the functional L on E and, in virtue of the lemma, it also
minimizes the functional / on D. The second part of the theorem —

— necessity — will be proved in § 6.5,
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The present theorem generalizes to the discrete case the sufficient
optimum conditions formulated for continuous processes. If the conditions
of §1.1 —§1.2 are imposed on the sets Y and U and on the functional ¢ and
constraint {6.2) is represented as a difference scheme

y(E+D)—y@=2aF[i, y(@), u (),

where A is a positive number, we readily see that the functions R and @ of
the theorem coincide with the corresponding functions of §1.2, apart from
a factor A and terms of higher order in A. It is significant that the
transition to an integral argument made it possible to reduce to a minimum
the various mathematical concepts and constiraints required for formulating
the result. The problem is now stated in terms of general sets, operators
defined on these sets, and functionals.

The optimum principle formulated in this section can be applied to reduce
the problem of minimization of the functional / on D to the problem of
maximizing the functional R(i, y, u) on V(i) for every i=1, 2, ..., N—1 and
the functionals @gy(y, #) and @,(y, u). The necessary relation between these
subproblems is established by an appropriate choice of the functional ¢(i, y).

The conditions of the theorem leave us considerable freedom in choosing
the functional ¢(i y). By imposing additional constraints on ¢, we can thus
develop various methods of solution within the framework of the proposed
formalism, including discrete analogs of the continuous methods considered
in previous chapters. We will now describe some of these analogs.

§ 6.3. BELLMAN'S METHOD

Suppose that for all ! the set V(i) coincides with the section V*(i) of the
class D for a given i. Let Vy({) be the projection of V;on Y, i.e., the set
of elements y € Y each of which can be paired with at least one element u
such that (y, u) € V(i); V. (i, y) is the section of V(i) for a given y € V,(i).
On V, (i) we construct the functionals

P, y)= sup R(@ y, u), i=1,2,..., N—1;

u€V,(i.y)
Foly)= inf @y(y, u); (6.12)
uEV (N ,y)
Filyy= inf ®(y,u), i=0,1,..., N
VEV (N, 1)

and choose ¢(i, y) so that
1) the functional P(i, y) exists and is independent of y,

P, y)=c(i),1=1,2,..., N—1, (6.13)

where ¢(i) is an arbitrary function;
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2) the functional F,(y) exists and is independent of y,
Fi(y) =a (6.14)

where ¢, is an arbitrary number.

In practice, the selection of this ¢ amounts to solving a Cauchy problem
for the functional equation (6.13) with the initial condition (6.14) in the
direction from N to 0. Indeed, from (6.14) we find

o(N, y) =—Inf [*(N, y, u) +cy,
uEVu(N.y)
and then from (6.13) for i=N—1

¢(N—1, )= sup {e[N, fF(N—1, y, &)]— fO(N~—1, y, u)}, (6.15)

u€V, (N-1, y)
etc. If the functional f°(i, ¥, 4) is bounded on V(i) for every I CA, it is
readily seen that the solution @(i, y) of this problem always exists.
Let {us(i, y)} be the sequence of the elements u & Vu (i y) on which

RIi, y, uy(y, D)= P(i, y) for i=1, 2,..., N—1 (6.16)
and

(I)O [y, ZS(OQ y)] — FO (y),
(I)l[.l/v Ex (N1 !/)] - Fl (y); (6-17)

and let {js({)} be the sequence of the solutions of the system
y(FD=S1i, y(@), us(, y(O)],
i=0,1,..., N—1; (6.18)
Folys(0)] ~ m.

The sequence {js(i), #s(i) =uslt, ys(i})]} belongs to D and satisfies the
sufficient conditions of the theorem, i.e., it is a minimizing sequence.
This method of selecting ¢(i y) thus leads to a complete solution of the
problem.

If we take ¢(i{)=0, and interpret ¢(i, y) as minus the '"'gain function",
setting

7(0) =yo; F(N)=yn,

the functional equation (6.13) coincides with the equation of Bellman's
optimum principle /1/.

§6.4. THE LAGRANGE—PONTRYAGIN METHOD

Let Y and U be finite-dimensional Euclidean spaces with the elements
y=(y', ..., y")and u=(u', ..., u"), respectively; V(i)=V,(i) XV.(i); the sets
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V,(0) and V,(N) are the fixed points yo € Y and yv C ¥, and V,(i) with

i=1,2, ..., N—1 coincide with Y; V,(i),i=0,1,..., N, coincide with U; the
vector functions f(i, y, «) and the functions f°(;, y, u) are continuous and
differentiable on V (i), i=0, 1, ..., N.

In this method, the function ¢(i, y) is sought simultaneously with the
extremal (7(i), ©(i)) € D. Assuming ¢(i y) to be continuous and differen-
tiable with respect to y for every i and introducing the vector function ¥ (i),
defined as the gradient of ¢ at the points of the extremal,

WD=00 (&, Poyly-5 i, (8.19)

we write the necessary conditions for a maximum of R:

oR . 0 . . — N =
Pk = _ — 4 =0
9 sty o =~ PO 5 H LGN, GO, Z01=0; (6.20)
O RG, gow| = ZH[SGED O, aD]=0,  (6.21)
ou y=y(i)u=u(ty  Ou
where
HIi, 9, g, al=yf(, y, &)= SO0, y. u). (6.22)

These equations are a discrete analog of the Euler —Lagrange equations
of variational calculus in Pontryagin's form. Together with the boundary

condition

9 (0)=ys ¥ (N =yw;
+5Z—f°[0’ Yo, #(0)]=0; (6.23)

20, [yw, & (N)] = =2 fOIN, g, GN)]==0,
[ ou

they define the extremal (y(i), 2(i)) ¢ D and ¢(i). To bring the solution to
completion, i.e., to prove that the pair (i), u(i)is indeed the sought absolute
minimizing solution, we must show that there exists a function ¢(i, y)
satisfying (6.8), (6.9), and (6.19),

Remark. Equations (6.21) are the necessary conditions for the
maximum of R(i, y, u) and also for the minimum of / on D/3/. Further
note that in the discrete case, as distinct from the continuous case, the
maximum of the Hamiltonian H with respect to # (Pontryagin's maximum
principle) does not provide a necessary condition for the maximum of
R(i, y, u), nor is it a necessary condition of optimum /3/.

§ 6.5. PROOF OF NECESSITY OF THE CONDITIONS
OF THE OPTIMUM PRINCIPLE

We will now prove the second part of Theorem 6.1, the necessity.
It follows from the lemma that if there exists a feasible algorithm for
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for the construction of the functional @(i, y) satisfying the conditions of the
lemma, then conditions 1 through 3 of the theorem are indeed the necessary
conditions for an optimum. Such an algorithm, in particular, is defined
by Bellman's method if the sets V,(i), i=1, 2,..., N, coincide with ¥ and the
functional fo(i, y, 4) is bounded on V(i) for every fixed i & A.

Consider the auxiliary problem of minimizing the functional

T=3 7 y@), u (@)
=0

on the set D of the pairs y(i), #(i). Here FO[i, y, u]= fo(, y, u)for ye V()
and =K for yeV,(i);K=qg+ sup f°(, y, u); ¢ is any number satisfying

the inequality (4.0)€EV (1), 1€A
N
sup / —inf /= su 0, y, u) — inf 0, y, w)l.
7= bp E g)(u[.u)ee’(l)f( Y ) (y.M)EV(l)f( 4 Wl

The set D differs from D only in the structure of the set V({) of the ad-
missible pairs (y, #) ¢ YXU. Indeed, V(i) coincides with Y for all i £ A4,
and ¥, (i, y) coincides with V. (i, y) for yC V, (i) and with U for y € Y/V,(i).
Clearly D ( D and I'=I for (y(i), u(i{))cD. On any element from D which
does not belong to D, the functional I assumes a value which is greater
than its value on any element of D. Indeed, suppose that the condition
(y(i), u(i)) € V(i) breaks down for 1<m<N+1 values of {. Then

T—sup/>mg+infl—sup/>(m—1)g>0.
D E E

This signifies that starting with some S=s all the elements of the mini-
mizing sequence of the functional I lie in D, i.e., {7s(i), @s{f)} ¢ D for S>s.
Since =1/ on D, this sequence is also a minimizing sequence for the
functional /.

Let the functional ¢(i, y) satisfy the conditions of the theorem for this
problem. The functionals R(i y, u), @y, and ®, corresponding to this ¢ (i y)
coincide on V(i) with the analogous functionals of the original problem, and
since V(i) ( V(i), they go on the sequence {ys({), us({) } ( D to their largest
(smallest) value on V (i), i.e., the functional g(i, y) satisfies conditions 1
through 3 of Theorem 6.1 for the problem of minimizing / on D also. Since
the problem of minimizing I on D belongs to the type of problems for which
the existence of the functional ¢(i, y) is a necessary condition, it is also a
necessary condition for the original problem.
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Supplement

THE SIMPLEST FUNCTIONAL ON THE SET OF DIS-
CONTINUOUS FUNCTIONS AND FUNCTIONS WITH
A BOUNDED DERIVATIVE

The calculus of variations arose back inthe 17th and the 18th centuryasa
branch of mathematical analysis concerned with the searchof objects (functions,
curves, surfaces, etc.) on which a given integral attained its minimum or
maximum value. Because of the then prevailing concepts in mathematics
and the first particular applications of the theory (the brachistochrone
problem, the problem of light refraction, the problem of isoperimeters,
and later the least action principle), it was naturally assumed that the
minimum (or the maximum) would be attained on a smooth or, in the worst
case, piecewise-smooth continuous curve, provided the lower bound of the
functional existed. This conviction persisted until the time of Weierstrass,
and it actually served as a basis for Lagrange's method of variations, which
reduced the problem of the extremum of a functional to a boundary-value
problem for differential Euler—Lagrange equations whose solution was
followed by a verification of a whole gamut of necessary and sufficient
conditions. After Lagrange, considerable contributions to the theory were
made by Legendre, Jacobi, Weierstrass, and Hilbert, who developed
Lagrange's method to a stage when it became a highly refined, powerful, and
often irreplaceable tool of analysis, which to this day constitutes the
fundamental algorithm for the solution of variational problems.

However, Weierstrass in his famous disputes with Riemann produced
numerous examples showing that the minimum of a functional /(u4), where
u is an element of some set U, is not necessarily attained on the elements
of that set. In particular, ifu € C;, the minimizing solution does not always
belong to the class Cof continuous smooth functions y(¢) and its derivative,
and even the function itself, may have discontinuities. Moreover, as we
shall see below, the function y(f) may fail to represent a curve. Hence it
follows that by confining the analysis to C, we cannot obtain a conclusive
solution of the problem regarding the absolute minima of functionals.

This development was apparently responsible for Hilbert's unconventional
approach to the problem of the absolute minimum of the functional

I=\Fy, vy, s)ds. (s.1)

e by
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He rejected the entire refined, sophisticated, and rigorous classical
apparatus of the method of variations and defined the functional (S. 1) on the
set of all rectifiable curves. He then proceeded to construct these curves,
selecting those whose length — the functional / — approached a lower bound
(a minimizing sequence). As the next stage, he proved the existence of a
limit curve and established its extremal and functional properties. This
approach constituted the prototype of a new algorithm, one of the so-called
direct methods of variational calculus. We will concentrate on two trends
among the various ideas prevailing in this field.

1. The theoretical-functional frend. This irend is mainly
concerned with the existence of an absolute extremal and the determination
of its functional properties. A characteristic feature of this trend is the
large-scale application of the theory of functions of a real variable. The
problem of minimum is considered on the set of absolutely continuous
functions, using Lebesgue integrals. This trend reached its peak in the
1920—1930's in the work of Tonelli and his school in the West and Krylov,
Bogolyubov, and Lavrent'ev in the USSR, Tonelli /17/ showed, for a
number of important particular cases, that the absolute extremum is
attained in the class of absolutely continuous functions. Lavrent'ev /10/
proved that the problem of the absolute minimum of the functional

I=\ F(4 y, y')at (s.2)

EY I

becomes meaningless if the class of admissible functions is extended to
include all functions of bounded variation. He also derived the sufficient
conditions for the lower limit of the functional (S. 2) in the class of absolutely
continuous functions to coincide with its lower limit in the class of
continuously differentiable functions. Later, this result was strengthened by
Tonelli. Under certain additional conditions imposed on F (¢ y, y’), the
minimizing solution y(f) has almost everywhere a firstand a second derivative,
provided it belongs to the class of absolutely continuous functions.
Bogolyubov /1/ generalized Tonelli's results. We thus see that the
theoretical-functional school produced quite significant results. However,
the fundamental problem of this school — namely the problem of existence

of the absolute extremum and the functional properties of extremals —
remains on the whole unsolved even for the simplest functional (S. 2), not

to mention the practical construction of extremals. It is not clear under
what conditions the extremal belongs to the class of absolutely continuous
functions and when it does not belong to this class and, if the latter applies,
whether or not the class of the admissible objects can be extended so as

to include the objects on which the minimum is attained.

The material of the following sections indicates that these problems
cannot be solved at all by traditional theoretical-functional methods. After
all, the choice of the class of admissible objects is prescribed not by the
inner logic of the variational calculus but by entirely extraneous factors
stemming from the elements of the theory of functions of a real variable.
Thus, the absolutely continuous functions are adopted as the class of ad-
missible objects because the Lebesgue integral is defined on this class.

But this is clearly of no relevance for the fundamental processes of the
calculus of variations.
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The above considerations reveal the limitations of the theoretical-
functional methods, but in no way detract from their value, since in a
number of important cases they provide the best and, possibly, the only
tool for the solution of the problem of the existence and the properties of
absolute extremals.

2. The second trend in the theory of direct methods can be described as
the applied trend. The determination of a minimizing sequence
directly involves the sought function on which the extremum is attained and
calls for approximating this function by a suitable sequence. If a minimizing
sequence can be effectively chosen, we automatically prove the existence
and often approach (although purely theoretically) with any desired accuracy
to the solution of the problem. Since the Euler—Lagrange equations are
analytically solvable in exceptional cases only, this direct approximation is
generally more effective than the solution of the corresponding boundary
problem. The second trend is thus mainly concerned with the various
aspects of the particular choice of minimizing sequences and their
convergence.

Historically, the first method of construction of a minimizing sequence
was developed by Euler (his finite-difference method). After two centuries
in oblivion, it was resurrected and rigorously developed by Soviet mathema-
ticians, mainly Lyusternik /11/, and also Petrovskii, Krylov, Bogolyubov.
In the West, this method was taken up by Courant's school /8/.

A powerful direct method for the solution of variational problems is
Ritz's method, first advanced in /16/. Ritz considers an n-parametric
family of functions y,(¢, @), a={a,, as, ..., az}. On these functions, the
functional /(y)is reduced to a function of a finite number of variables. The
extremum [ (y,) =/, is found by determining the coefficients from the
equations

n 0, i=1, 2

da;

R

In ordinary problems, the sequence of these extremal functions y,(¢) was
assumed to go in the limit to a function extremizing the functional /{y). This
method found wide applications in a variety of problems. Poincaré referred
to it as a method for the engineer, thus stressing its outstanding applied
importance.

Very extensive literature, both Soviet and Western, is currently available
on Ritz's method. Of particular merit is the study of Krylov and Tamarkin
/9/ who established a theoretical foundation for Ritz's method by proving the
convergence of the minimizing sequence for a wide range of important
applied problems.

The complete solution of the variational problem by the direct method
is obtained by a combination of the two schools of thought and includes the
following stages:

1. Construction of a minimizing sequence {y,(?)}.

2. Proof of the convergence of {y,(f)} to a function y(¢) which belongs
to the class of admissible curves.

3. Proof of the convergence

inf 7 (y (6) =1im / (4, (£)-

() oo
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Significant difficulties are encountered already in the first stage, since
we have to solve a system of n finite equations in n unknowns for every fixed
n—oo, Since these equations, as a rule, are nonlinear, new solutions may
arise at every successive stage, greatly complicating the situation. In
general, a direct solution of the variational problem is more involved than
the solution by the method of variations, since in addition to obtaining the
extremal we at the same time solve the more general problem of its
approximation by some given system of functions.

However, the solution of problems raised by Weierstrass's discovery
does not necessarily follow Hilbert's path: the method of variations can be
improved and generalized to a wider class of admissible curves. In this
category we have the derivation of the well-known Erdmann—Weierstrass
conditions at the corner points of the extremal and the theory of deeper dis-
continuities developed by the Soviet mathematician Razmadze /13/.
Razmadze proceeded from Weierstrass's well-known example: the integral

41
=\ £yt
I L y

with the boundary conditions y(—1)=—1, y(1)=1 has a zero lower bound.
Indeed, the value of this integral on the family of curves

goes to zero for e—0, but the lower bound is not attained for any continuous
curve. In other words, the problem has no classical solution. The limit
of the family y (¢, ¢) for e—0 is the discontinuous function

—1 t<<0

y(® { 1 £>0,
and /(y)=0. Thus, if the class of admissible functions is extended to
include functions with a discontinuity of the first kind, the integral can be
minimized. Razmadze raised a general question: in what cases a problem
which is unsolvable in the class of continuous functions has a solution on a
wider set of curves with one discontinuity point.

An integral of a discontinuous function is defined as a sum of the integrals
over the continuous sections:

b £,—0 b
L= Ft y, y)at= [ F(t, y, y1dt4 | F(t, y, y)at, (s.3)
a a to+0

where /o is a point of discontinuity of the first kind of y(¢). The functional
of the discontinuous function y(f) defined in this way satisfies the condition

I(y)=lim [ (c,), (S. 4)

oo
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where {c,} €C; is an approximating sequence of continuous smooth functions,
only if we have at the discontinuity point %

. 1
flta, 9, 0, D=lim pF (ty, y, —)=0. (5. 5)
p-0 P
The necessary conditions to be satisfied by the extremal at the dis-
continuity point are derived,

Fy’llo—Osz’llﬁo:O’ }

S. 6
F,to—0=F|10+0- ( )

After that, the theory of sufficient conditions is developed.

In general, when condition (8. 4) does not restrict the class of admissible
curves, the discontinuity is ''floating", i.e., not fixed. In particular cases,
when condition {S. 5) is satisfied only in isolated points of the segment
[a, 8], the discontinuity point is fixed (Weierstrass's example belongs to
this category).

Further development of the method of variations along the lines laid down
by Razmadze was undertaken by Nikoladze /12/, Ermilin /2, 3, 4/, Kerimov
/5,86,7/. Krylov generalized the fundamental lemma of variational calculus
using Razmadze's results.

Razmadze's main achievement, in our opinion, is the inclusion of curves
containing a finite number of vertical segments among the admissible
curves. This generalization in itself does not resolve the difficulty, but it
constitutes an important step forward toward the application of a new
algorithm, described below, which ensures a complete solution of the
problem of the absolute minimum for a wide class of functionals. This
algorithm includes Razmadze's general case as a particular case and
essentially advances the solution of the problem for functionals not included
in this class. Particular results of Razmadze's method and the entire
theory of necessary and sufficient conditions lose much of their value in
this case, since both the absolute and the strong local minima are attained
on the (y, z) minimals constructed by this algorithm and only on them.
Razmadze's theory retains its original value only for the particular case of
fixed discontinuity points,

Another, although less significant, point to be remembered is that
definition (S. 3) of a functional on a discontinuous function is by no means
unobjectionable. It suffices to note that this definition is meaningless even
for the simplest problem of a curve of minimum length, since it ignores
the length of the vertical sections.

A more general and more natural definition of a functional on discontinuous
functions will be given below. It will include, as a particular case, those
problems for which definition (S. 3) is meaningful.

A new method is proposed for the solution of variational problems. This
method establishes the existence of a new class of minimizing solutions,
which are no less typical then the classical Euler—Lagrange extremals, but
are of fundamentally different nature. Unlike the Euler—Lagrange extremals,
these new extremals are not solutions of any boundary value problem. Their
finite equations are written directly in the form of the necessary conditions
of extremum. The new minimizing solutions are not necessarily functions:
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they may belong to an entirely new class of objects, called (y, z) curves,

If z(¢f)= y’(¢) everywhere, the (y, 2) curve is an ordinary piecewise-

smooth function. If, however, y'(f)s42z(t), the (y, 2) minimal is not

a function, but if it is known, i.e., the pair of functions y(¢), z(f) are known,
a minimizing sequence of piecewise-smooth curves approximating to the

(y, z) minimal is also known. The new method is considered for the partic-
ular case of the simplest functional

]=5[‘7 F(t, y, y)de, (S.7)
y@=a; y(6)=b

This functional is traditionally used as a touchstone for all new theories
in variational calculus (in many cases it is sufficient to reject a theory),
and more than half the publications on the subject are concerned with it.

If the function

i v p 1)=pF(t, 9, —;—)

for p=+0 exists and is continuous in p in the ({, y) plane, the proposed
algorithm gives a complete solution of the problem of the absolute minimum
of the functional {S. 7). In this case, the minimum is attained on the above-
mentioned minimals of the new type. An exceptionally simple necessary
and sufficient condition of minimum is derived in the form of a minimum

of some known function S(f4, y, z) with respect to y and z for every fixed

tC [a, b]. In other cases, the minimum may be attained both on the (y, z)
minimals and on the classical Euler—Lagrange extremals.

Next we consider the important applied problem of the minimum of the
functional (S. 7) on the set of functions with a bounded derivative, i.e.,
functions satisfying inequality constraints. It is shown that in this case we
are again dealing with minimals which are analogs of the (y, z) minimals
of the simplest functional, but the role of the vertical directions is assumed
by the limit directions

y'=N(t y) or y=fa(t, y).

Under certain conditions, the minimum in this problem is attained on
regular Euler extremals.

The new method is applied to solve some modern variational problems
of applied mechanics. These solutions are of independent interest and,
moreover, provide an excellent illustration of the application of the new
method and the actual form of the intangible (y, z) minimals.

Some introductory propositions

Let a functional [ satisfying the condition

inf/ (¢) > —o0 (S. 8)
ueM

be defined on some set M.
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We are looking for the absolute minimum of /(«) over M, i.e., for an
object ¥ which satisfies the equality

I (0)=inf [ (u). (8.9)
ueM
The elements of the set M do not necessarily include the element Z on
which the lower bound is attained. In this case, we shall try to embed M
in a wider set M ) M in which the minimum element u is contained,
appropriately extending the definition of the functional /on the set M.
The extension /3 (the definition of / on M) only has to meet the following
requirements:
1) on the elements of M it coincides with the original functional, i.e.,
I () =In(u), uCM;
2) if u & Mthere exists a sequence {u,} ( M such that
15 (w)y=1im (a,). (S.10)

Ao

If a suitable set M is given (in the particular case L—L—QM it coincides
with M), the element & ¢ M minimizing the functional [ (#) on M has been
determined, and the sequence {z.} ( M satisfying the condition

! (w)=1lim 7 (u,) (S.11)
a0
has been constructed, we consider the problem of the absolute minimum
of the functional on the set M solved.

The element z ¢ M is called the absolute minimizing solution (or the
absoluie minimal) of the functional / on M. The sequence {u.} is a
minimizing sequence, and the set M is an /-extension of the set M.

Lemma. Let z (M satisfy (S.9). Then

! (u)=inf [ (x). (s.12)
ueM

Conversely, if u C /7 satisfies (S.12), (S.9) holds true. Let (S.9) be true,
and suppose that (S. 12) is not satisfied. Then there exists an element
v ¢ M such that /(v)<I(u). We write

I{a)—I(v) =p>0.

In virtue of the definition of / on M, there exists a sequence {u,} (M
such that [/(v)— I (u,) |< P for sufficiently large n and therefore [(u.)</(z).
The last inequality contradicts (S. 9), however. Let (S.12) be true. Since
M (M, we have [(a)<I(u), 4« € M. On the other hand, according to the
definition of / on M, ,there exists a sequence {u,} ( M such that I(u,) =1(a).
Hence, in virtue of the definition of the lower bound, we obtain (S. 9).

This lemma shows that the minimals of the functional / on the sets M
and M coincide, so that instead of minimizing the functional on the set M
we may minimize [ on M, if this presents any advantages.
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§ S.1. THE SIMPLEST FUNCTIONAL
1.1, Statement of the problem

Consider the minimum of the functional
I3
I@)={ F(t g y)at (s.13)
a

on the set U of curves with the following properties:

1) the coordinates ¢ and y of the points of the curve u € U may be re-
presented as continuous functions of some parameter £ ;

2) the function y(¢)is continuous along the curve u and is single-valued
everywhere on [q, b], except a finite set of points {u;} (i=1,2, ..., &),
where it may have discontinuities of the first kind;

3) the derivative y’(f) of the function y(¢) is continuous and bounded on
the set [a, b)/{n:};

4) the function y(¢) satisfies the condition

y(a)=ay; y(b) =0b,, (S.14)

where a; and b, are known;

5) the curves u €U lie in the region B on the (¢, y) plane where the
function F (¢, y, 2)is continuous in all the three arguments together with the
derivatives F;, Fy, F, for any z;

6) the upper and the lower boundaries I'i({) and T'2(f) of the region B, if
they exist, have the properties 1 —3 of the set U.

Definition 1. The right-hand side of (S.13) is interpreted as a line
integral along the curve u in the direction from the point A(a, a,) to the
point B(b, b)), i.e.,

B .
Iw={f v t, y)dk, (S.15)
where
_ KAW
St g p, q)—pF(f, 78 p), (S.16)

k is the parameter taking the values k=q for f{=gqa, y=a; and k=f>a for
t=b, y=5b, which increases along u from A4 to B.

In virtue of the above properties of the function F({, y, z) and the set 4,
the latter contains curves on which the functional is finite. For the problem
to be meaningful, we have to assume further that

inf 7 (u) =m>—oo. (S.17)
ueU
Taking dk=dt for p;<t<pin and dk=|dy| for t=y;, i=0, 1, ..., k, where

po=a, pa=">, we obtain from Definition 1
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n—1 n

[@)=3 11+ ® e, y() ¥ @) (5.18)
i=0 1=0
where
by~ 0
e S Fdt: (S.19)
w0
y —
O,y =Wt sign(y—y)ds (S. 20)
;
y=y (40 y=y(—0) (S.21)
W, g, sign(y—y)=limf(t y, p, D
lpl = 0, sign p=sign{y-—y). (s. 22)

Because of the properties of the function F(f y, 2) and the set U, the integrals
IFalways exist. Therefore /(u) exists on those and only those curves u €U
for which the integrals (S. 20) exist on the vertical sections (if any).
Let the curve 7€ U be the minimal of /(«)in U, i.e., I(E)=inf£(u). By
ug

(S.17), I(%) exists and the existence of the integrals ®(p;, ¥i, ¥:) on the
vertical sections therefore may be regarded as the first necessary condition
to be satisfied by the minimizing solution u.

This one condition enables us, in some highly important particular cases,
to assess the qualitative character of the minimum and, in particular, the
possible existence of discontinuities and their position.

The general case in our treatment is such that the condition of existence
of M(¢ y, y) at the points of discontinuity does not impose any additional
constraints on the class of admissible curves, i.e., ®(f, y, j) exists for

all ¢, y, y €B.

1.2. Relation to the problem of the absolute minimum
in the class of piecewise-smooth functions C,

In the class of piecewise-smooth functions C;, Definition 1 coincides
with the conventional classical Riemann integral I(u),un € C,.

Let the object # € U be the absolute minimal of [/ on U, where U is some
[-extension of U. The set Uis the /-extension of the class C,if for every
curve u€ U there exists a sequence {¢,} ( C, such that

T, (@)=lim /(c,) (s. 23)

n—+co

Here the subscript u indicates that the functional is taken in the sense of
(S.15). Indeed, in virtue of the definition of the /-extension, for any u¢ U
there exists a sequence {u,} ¢ U satisfying (S.12) and, therefore, by (S.23),
also a sequence {c¢,} C C; such that

Iz (w)=1im 7 (c3).

fn—+o0
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By our lemma, the absolute minimal u of the functional / in u is therefore
also the absolute minimal in the class Cy, i.e.,

1 (w)=int / (), (S.24)
ueC,

if for every u C U there exists a sequence {c,} ( C, satisfying (S. 23).

We will show in what follows that this condition is always satisfied in the
general case. In the so-called particular cases, it is not always satisfied.

If the absolute minimal in U is also the absolute minimal in C;, we will
refer to it as the absolute minimal of the functional / (without mentioning
any classes).

1.3. The general case

The general case in our terminology is such that the condition of
existence of @(f, y, ¥) on the vertical sections does not impose any additional
restrictions on the class of curves, i.e., O(¢ y, 7) exists for all £, ¥y, ¥.
This implies that for every fixed { € [a, b], the two functions of a single
variable f[¢, y, £0,1] should be summable on any segment [y, ¥] € [[2(¢), T1(¢)].

In what follows, we assume that both functions | (f, y, =0,1) moreover
exists and are continuous with their derivatives f; and [, everywhere in B,

We will see below that the character of the extremals is determined by
the properties of the function (¢ y, p, 1) for p=0, specifically, by whether
the function f(¢, g, p, 1) for p=0 is continuous or discontinuous in p. Both
these cases are of the greatest significance both from theoretical and applied
considerations, and we will consider them separately in some detail.

The system of definitions and theorems introduced below leads to a
complete solution of the problem of absolute minimum of the functional
(S.13) in the first case and discloses a number of highly valuable new facts
in the second. It admits of very extensive generalizations and provides a
foundation for all further constructions (Figure S. 1).

Consider the set of polygonal lines , [v,} (U, describedbythe functions
Y=y y;(t—1;) for {, < ¢ <tyy, i=0, 1,..., n—1, where

a=ty <t <... <l <t,=b

are the abscissas of the discontinuity points of y,(¢f), and y;, y, are 2n in-

dependent parameters defining the polygonal line y» for any fixed partition.
Definition 2, Consider a line u € U defined by the function y(¢).

We shall say that the sequence {y,} approximates the line u, or {y,}—u,

1f N>

Y=y (£;+0), (8. 25)
and for any >0,

lrn—t1<e |y, — 9" (G4-0) <e (S.26)
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for n>N(e). Here i=0,1,...,n—1. In this sense, {y.} is everywhere dense
on U.

Definition 3. Consider a pair of functions y(f) € U and z({) which are
defined, bounded, and continuous on the set [a, 8)/{n:}. We construct the
sequence {y,} so that

yi=y(t:+0) (s.27)
and for any &>0
| tia—tl<e Iy;—z(t,+0)]<e (S.28)

FIGURE S.1

for n>N(e), i=0, |, ..., n—1. In this case we say that the sequence {y.}
approximates the (y, z) line up, or {y.}—uo. The set of these (y, 2) lines
is designated U;. The function y(f)is the zero closeness function of the
(y, 2) line uo and 2(¢) is the local slope of this line.

If

z2(t)=y'(t) (S. 29)

almost everywhere on [a, 8], we have uy, €U. Thus U ( U.
Definition 4. The functional (S.13) of a (y, 2) line is defined as the
limit
1 (o) =1im / (v,). (s. 30)
{Ta} %0

Theorem 1. If the function f({, y, p, 1) exists and is continuous in p
for p=0 and for any ¢, y € B, the functional [ (), ug€ Uy, exists and is
expressed by the formula

E=lpyy —0 ® _
()= { [F(ty,2)+W(E g}y —2)]dt +2 ® (b yin b2) (8.31)
im0 B0 i=0
or by
b
I (uo)z(R)j S(t, y, 2) dt+0 (b, by, ¢ (b)) — D (a, ay, ¢ (@), (S.32)
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where
St v, A=F(, 4. =W (i, 4) (z—<'O)— | W,(t, D, (5.33)
c(t)

where ¢(f) € C, is an arbitrary function; W({, y) and @ (4, y, ¢) are defined by

(S.20) and (8. 22); u; are the discontinuity points of y{t), i=0, I, ..., k.
The symbol (R) indicates that a Riemann integral is meant. Since

f(t. y. p. 1) is continuous for p=0,

Wty )=W(ty —1)=W(, y)=f(ty 0, 1). (S.34)
Using (8. 20) and (S. 34), we may write
Dy F)=0 y c)—D(L §. ¢), (S. 35)

where c¢(f) is an arbitrary function. In what follows we take ¢(f) € C,.
By (S.18) and (S. 35),

n—1
[ ()=, Sist;+® (b, by, c ())—P(a, ay, c(a)), (S.386)
1=0
where
t 40 )
Siafy = S‘ Ft, Yu yn) di+O (L, y,, )—
£10
— Q1 Yiern O
!; are the discontinuity points of the function y,(f), i=0, I, ..., n—1, or

using Lagrange's theorem of finite differences

Si=F[f1, 4, (£, yn(E)]— D" (£, y,(£D), (D)) =
=F (£, 4, (8), ya(D]—=W (£, y(ED)[yn(tr)—
¥, (E%)
—c (- [ wpay (S.37)
c(£*)

=t +at8, 0<08< 1.
Using (S.27) and (S. 28), we may write

1)= S[E, y(E), 2@ at40()+
40 by, c(b)—0(a, ay ¢ (@) (S.38)

Taking the limit y,—u, in (S. 30), some terms in (S. 38) go to infinity,
and |ti+|—li| —0 .

In virtue of the properties of F({, y, 2), the function S[t, y(¢), z(£)]is
continuous in all its three arguments in region B of the ({, y) plane for any
finite 2. Since y(f) and z(f) are continuous almost everywhere and bounded
on {a, b], SIt, y(¢), 2(¢)] is also continuous almost everywhere, so that by the
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Lebesgue theorem, the function S{f, y(f), 2(¢)) is Riemann-integrable. This
indicates that for {y,}—up the sum (S. 38) has a limit, i.e., it is independent
of the particular choice of the sequence {y,}-u, (independent of the partition
{t] } and the position of the points £}).

We proved the existence of the functional /(i) on any (y, 2) line w € U,
and the validity of (S. 31). Similarly, starting with (S.18), we prove the
validity of (S.31) (this formula is proved in a more general form in
Theorem 2). Q. E.D.

Theorem 2. If the function f(f, y, p, 1) has a discontinuity of the first
kind in p for p=0 for any ({, y) €B, the functional /(u), uo € U,, exists and
is expressed by the equality

E~1 p; =0
la) =3 [ [F(t 4,2)FW( g, sign(y' —2) X
1=0 |;l+0
X (y' —2)dt+ 2 y W (e, sign (g —y.)dt (s.39)

":|

or by the equality
[4
1) =(R) | S (¢ y. =, sign(y' —2))dt+

+2[(1) (tiy Y, ¢, Sigﬂ (y’_'z))—(p(tf, 4. ¢, Sign(yl_z))]+

+® (b, by, c, sign(b;—y(bN— @ [a, ay ¢, sign(y(a)—ay)l, (S. 40)
{; are the points where the difference y’—z reverses its sign, j=1, 2, ..., r.
v (S.18), (S.27), and (S.28), remembering that y(f), z(¢) are continuous
and bounded, we have

A=l f, ,—0 noy;
Ivd=3 [ Fit g )adt+ 3 (Wit g, sign(y,—y,) dy=
j=q 40 =0y,
—2 F(t, y(&), 24N+
i=0
+ Wt y(t), sign(y' (¢)—=2 (f1)+0(5))]+0(5)] (41— )+
n y(u.)
+3 SWP,,E sign (y; — g,)] ds+0(e). (S. 41)
i=0 y(pl)

In virtue of the properties of the functions F(¢{ y, 2), W(¢, y. *1), y(f),
and 2(f), the function

F(t, y(t), 2(8)) + Wit y(t), sign(y’ () —=2()) 1y’ (&) —z(t))

is bounded and continuous almost everywhere in the intervals (p;, Hit1).
Hence, by the Lebesgue theorem, it is Riemann-integrable, i.e., the
limit (S. 30), where [(y,)is expressed in the form (S. 41), exists and is
independent of the choice of the sequence yn—uo.

The validity of (S. 40) is proved along the same lines as Theorem 1.
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Corollary 1. The functional /(u), 4o € U;, dependsontwo independent
functions y(¢) and z({) whose derivatives either do not enter the integrand,
as in (S. 31), or only enter as sign {(y’—2), as in (5. 40).

Corollary 2. It follows directly from expressions (S. 31) and (S. 39)
for /(ug) that the functional is continuous on the set U, of (y, 2) lines in the
sense that

17 () — 1 (ol <,
if (s. 42)

ly—y@Ol<<n); lz—z@) <n ()

everywhere on [q, b], except the n-neighborhoods of the points u; where
y(t) is discontinuous.

Corollary 3. It follows from (S.32) and (S. 40) that Definitions 1 and
4 coincide on the set of y(¢).

Corollary 4. It follows directly from Definition 4 and Corollary 3
that the set U, is an /-extension of the set U.

Remark. Expression (S.40) for /(u), uC Uy, is not defined on ordinary
smooth curves, i.e., for y'(¢f) =z(f). The continuity of the functional on U,
shows that its definition can be extended for these curves if we take for
y'—z=0

sign(y’—z)=1, or sign(y'—z)=—1.

In this case, expression (S. 40), like (S. 39), is defined over the entire
set Uj.

We will now show that U, and also U,, are /-extensions of the class C,
of piecewise-smooth functions, i.e., for any line u EU there is a sequence
{cn} € C, such that

la(u)=lnim 1 (c,). (S.23)

Consider some line u C U. We replace all the vertical segments of the
line u« to segments making an angle of 1 to the vertical which pass through
n

the midpoints of the vertical segments. Let n>0 if the deflection from the
vertical is in the clockwise direction, and n<{0 if the deflection is counter-
clockwise. The deflection should be such that the resulting line ¢, corres-
ponds to a single-valued function y,(f), i.e.,

sign i =sign [y (4, 4-0) — y (s, —0)]. (S. 42a)
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Clearly [c,} C(Cy; then

gt Vit 0 (-rll—)
Hed=X | Fart
=0 u,-+o(%)
u,+o( ) e 0(1)
+§) j( )F(f, gy, n a't_z f( )th+ (s. 43)
w—0i— Pl+0
fert2)
+Y j F(t, y, n)— dy;

()

signn=signdy.

Taking the limit n—ooin (S. 43), we obtain on the right expression (S.18)
for /(u) in the sense of Definition 1. Hence, for any line u( U, there
exists a sequence {c,} ( C; which satisfies (S.23). Therefore, the absolute
minimal on U is at the same time the absolute minimal of (S.13) on C,.

In our definition of U,, we imposed the following conditions on its
elements, (y, 2)lines: y(f) €U and z(f) is bounded everywhere on [a, b] and
continuous on [g, b}/{u;}, where {u;} is a finite set of points.

Definition 5. We say that the sequence of (y, 2) lines {u,} € U goes
to a (y, z) object u C Uy if for fixed f, almost everywhere on [a, 8].

y(t)=limy, (¢);

(S. 44)
z(f)y=lim 2z, (£).

N+

The last equalities are to be interpreted in the following sense: if y(¢)
is finite at a point ¢, then for any given e>0 there exists N such that

lg.()—y(H)|<e for n>N. (S. 45)

If y(¢t) ==*o0, then for any M>0 or, respectively, M<0, there exists
N such that for n>N

Yn(t) >M>0, (S. 46)

or, respectively,
Yn(t) <M<O0. (S.47)
The convergence for 2,(f) is similarly interpreted.

The set Uy of (y, 2) objects is called the closure of U,. Evidently, T, is
an I -extension of U,.
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Definition 6., The functional(S.13)on an object #€ U, is defined by
the equality

I{u)y= lim I(a,). (S. 48)
{#p}>u.{uy} cUo

Here /(u,) is expressed by any one of the equalities (S. 31), (S. 32), (S. 39),
(S. 40).

Let us now consider separately the two cases when [({, 4. p, 1) is
continuous at p=0 and when it has a discontinuity at p=0.

1. The function f(4 y. p. 1) is continuous in p for p=0 and for any (f, y) € B.

The problem of the absolute minimum of the functional (S. 13) in this case
is completely solved by the following theorem.

Theorem 3. The absolute minimum of the functional (S.13) is
attained on a (y, z) object #& U, which satisfies the condition

S(¢, y, )=~ inf S, y, 2) (S. 49)

T, () <y(£)<T1 (1) —oo k2500

for fixed ¢ almost everywhere on [g, b] and only on this object.
Proof. We will first prove the theorem for the absolute maximum on
Us. By (S.17) and the lemma we have

inf/ (g)=m > —oo0, (S.50)
u€l,

According to the definition of a lower Bound, there exists a sequence
{u.} C Uy such that I(un) —m, [{un)<m. Expression (8. 31) for [(u), u & Uy,

and (S. 50) directly show that:
1. The lower bound of S(f, y, z)exists everywhere on [g, ],

()= nf S, y, 2)

Ti(t)<y<Ty{t), —m<2<t o

and since S({ y, 2) is continuous in y and 2, there exist 7(f) and Z(f) on
which S=I/().
2. On the sequence {u,} for n—oo,

St Y 2.) L) and y, ()~ y (), 2, () > 2 (D)

in the sence of Definition 5. Since (ya(f),2,(£)) € Uy, the (y, 2) object & de-
scribed by the pair (7(t), Z(¢)) belongs to D,.

3. From the definition of the lower bound and from item 2 above we
have

b
m= lim 1 (u)= lim S S(¢, y, 2,) dt-+const, (S.51)

e, {u,eU, Unlt) 5 (0); 2 (1)»2T0) @

By Definition 6, the last expression is the functional /(u), @ € U,.
We proved that the absolute minimum of the functional (S.13) on T is
attained on the (y, 2) object u € U, satisfying (S. 49) and, by item 2, only
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on this object. The theorem is thus valid for minima on U;. Since U,

and hence Uy, are /-extensions of U and C,, our lemma shows that the

theorem remains true for the absolute minimum also. Q. E.D,
Corollary 1. It follows from (S. 49) and the continuity of S(¢ y, 2) and

its partial derivatives, that if the zero closeness function 7 (f) of the

minimal Z lies inside the region B, and the local slope z(¢)is finite, then

almost everywhere on [a, 8]

Sy =Fy—W,-z2—W,=0; } (5. 52)

S,=F,—w=0.

Corollary 2. If the classical Euler—Lagrange extremal 7(¢) which
is the solution of the equation

8/ (y(8)) =0

in the class C, of.continuous piecewise-smooth functions does not satisfy
(S. 49) {(Z=¥’ in this case), the functional / either has a weak local minimum
in C; on this extremal or has no minimum altogether. No strong local
minimum in C;, and certainly no absolute minimum, can be attained on this
extremal.

Discussion. Condition (S.49) defines a (y, 2) object @ on which the
functional (S. 13) attains its absolute minimum, i.e., it defines the zero
closeness function §(f) of the functional and the local slope z(f). If we find
that 7(t) € U and y'(f) =z(f) everywhere on [q, b], except a finite number of
points, then @ CU. Otherwise, the minimal # €U , but the solution
7(t), Z(t) defines a minimizing sequence {y,} CU. 1If # € U;, the minimizing
sequence {yn} ¢ U is constructed as indicated in Definition 2, i.e., we
construct the polygonal lines y, so that

!/‘-—-;(f‘)" !/1’ =z(l‘), i=0y 11 2v"-» /1_1'

Irrespective of the partition of the segment [q, 5],

1(v)— I1(x).

N oo

If @ €& Uy, we first select a sequence of pairs {ym(f). 2. (¢) } ¢ Uy which
goes to # in the sense of Definition 5, and on each element of the sequence
we construct a sequence of polygonal lines {y,m}—Um EUO in the sence of
Definition 3. Any sequence {y*} selected so that m—oo, n—o0 for k—oo is
a minimizing sequence.

Thus, if we found the extremal pair §(¢), z({) we have all the elements
of the minimizing sequence.

If the minimal & éU, the minimizing sequence is of special importance,
since the minimal itself cannot be constructed.

Let us investigate the minimals in more detail, assuming additionally
that F({, y, 2) and W (¢, y) are twice differentiable in all their three arguments
in region B of the (¢, y) plane for any =z.
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1. Let(S.52)have a unique solution 4°(f), 2°(f) and a positive determinant
Dit, ¢, 29=S8,,-S,,—Si> 0. (8. 53)

Since the right-hand sides of (S. 52) are continuous and have continuous
partial derivatives, the existence theorem of implicit functions indicates that
y°(t), 2°(¢) are continuous and differentiable on [a, 8]. If [2(f) <y®(£)<T1(¥)
everywhere on [a, b}, y°(f) coincides with the zero closeness function y(f) of
the minimal and 2°(¢) coincides with its local slope Z(f) everywhere on [a, 8].
At the points t=a and {=b, the values of § and y° ingeneral do not coincide:

7(a) =ai7~yo(a).

Thus, if D(¢, % 2° >0, the minimal uo not only belongs to Uy, but its
zero closeness function 7 (#) and the local slope z(f)are continuous and
differentiable everywhere on [a, b], except the points {=a and f=0b, where
7(f), in general, may have discontinuities of the first kind. If a posteriori
we find that 7’(¢) =z (f) almost everywhere on [a, b], then u & U,

2. Now suppose that system (S. 52) has a finite number of solutions for
which D=0 almost everywhere on [g, b]. By the existence theorem of
implicit functions, these solutions are piecewise-differentiable. The
minimal y(¢), z(¢) consists of the sections of these solutions with D>0 and
of sections of the boundary. The selection of these sections is determined
by the sufficient and the necessary condition (S. 49). It follows from the
same condition that, besides the end points, the functions y(f) and z({) may
have discontinuities of the first kind at points {=p;, where

S y M (), 2V E)=S e 9P (), 22 (W) (S. 54)

Here yV(f), 20(¢) and y@(f), 2@(t) are different solutions of (S. 52) or
pieces of the boundary. At those points where (S. 54) is not satisfied but
D=0, y'(f) or z/(¢t) may become infinite or not exist at all. Moreover, at
some points of the segment [a, b] or on some continuum, we may find that
condition (S.49)is not satisfied for any of the solutions of (3.52), and inf S(¢, y, 2)
is attained for z= oo or, if Bis unbounded, for y=*co (S remaining
bounded). It follows that in this case the minimal Z does not necessarily
belong either to U or to U,

By Theorem 3, it always belongs to Us. As in previous cases, the
minimal z(#), §(f)is fully defined by (S. 49).

Together with region B, we introduce a right cylinder Q in the (¢ y, 2)
space having B as its base in the (¢, y) plane. According to the statement
of our problem, the function F({, y, 2) is continuous in Q together with its
derivatives Fy, Fy, F,.

3. System (S. 52) has no solutions in the interior of the cylinder Q in
the (¢, y, z) space. The minimum is attained on the boundary of Q.

Suppose the minimum is attained on the upper boundary I';({). We thus
have

g=T(). (S. 55)
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The local slope z of the minimal is obtained from the condition
S (¢t Ty (), 2)=infS(t, Ty(t), 2). (S. 56)
—o 2L ™

If z(¢) is finite, it satisfies the necessary condition

S,=F.(t, ' (t), 2)—W (£ I (8)) =0. (S.57)

If Ty(¢) € U and Z(f) is bounded, we have & CU,. We would like to make
one observation concerning this case.

If IV($)—z($)<0, the approximating sequence {yn} constructed along the
previous.lines, i.e., the curve

yi=y (0 yi=z(+0), i=0,1,2,...1,

does not belong to the set of admissible lines, since it extends beyond the
boundary of B. In this case we should take

gi=y(t;+0); yi=2(t+0), (S. 58)

where
Y=Y+ Yyi—1- A =y,(t;—0).

The sequence {y,} constructed in this way clearly belongs to B and, in
virtue of the continuity of the functional (), u € U,, in the sense of (S, 42),
it is also a minimizing sequence.

4, D(t y, 2)=0 everywhere in the cylinder Q. System (S.52) is
equivalent to the single equation

f(t g, 2)=0. (S.59)

This equation contains two independent unknown functions, y and z.
Indeed, the class U, in general, contains infinitely many (y, 2) lines satis-
fying the necessary conditions (S. 52). These lines may include extremals
which belong to U. The latter should satisfy, almost everywhere on [a, 5],
the differential equation

f(t y y)=0. (S. 60)

Such an extremal may have discontinuities of the first kind on any finite
set of arbitrarily selected points £ & [a, b] containing at least one point. On
the smooth sections it satisfies the equation

y(8) =y°(t, C3),

where yo(f, C;) is a general solution of (S. 60), and C; is the integral constant
for the i-th section, if there exist C;# C;;, such that condition (S. 54) is
satisfied at the points {;, which takes in the present case the form

S, ¥ (4, Co), ¥ 4, C)) =S, ¥, Cin), Yy (£, Cii). (S.61)
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Thus in general the extremal # belonging to the set U is not unique. The
only exception is the case when

szO. (S. 62)

The extremal is then unique and is defined by the equation

[t y)=0.

In virtue of the properties of F({, y, 2) and W (¢, y), the function j({)is
continuous and smooth everywhere except the end points, provided f, (¢, y) %0
everywhere on (a, b).

A more restricted problem can be formulated: find the extremal with
the least number of discontinuities on U. It is readily seen that this
extremal in our case consists of two smooth branches which are solutions
of equation (S. 60) passing through the points (@, a,) and (4, b)) and a straight
vertical segment {=/{ joining the ends of these branches, where f is some
point of the segment [a, b].

This result coincides with Razmadze's result obtained in /13/.
Razmadze's condition for the case of a ''floating' discontinuity point also
can be obtained without difficulty:

Flty, 9o 40)=F (bs, Yo, 0% } (S. 63)

Fy (to Yo yé)sz'(tOv .z/o, 56)20,

where yo=y(f+0), Fo=y({c—0). To this end, it suffices to take W(¢, y)=0.
in (S. 52) and (S. 54). Then from the second equation in (S. 52) we obtain
the second condition in (S. 6), and from (S. 54) we obtain the first equation
in (8. 6). Note that Razmadze's conditions both for a fixed and a ''floating"
discontinuity are valid only when W=0,

The sufficient conditions of extremum, as before, are presented by
(S. 49).

5. As we have seen above, if j(f) € U and Z({)=j’(f) almost everywhere
on [a, b], the minimal #, - U. It is readily seen that in this case 7 (f)almost
everywhere satisfies Euler's equation

’ d !
Fylt, vy, y )_'E Fy(t gy, y)y=0. (S. 64)

To show this, it suffices to differentiate the second equation in (S. 52)
and subtract it from the first.

Conclusions. 1. Letussummarizethe results of this section. Ifthe
function [(¢, y, p, 1) for p=0, (¢, y) & B, exists and is continuous in p, the
absolute extremum of the functional (S. 13) is attained on extremals of a
special kind (we call them type a extremals), which are fundamentally
different from the classical Euler extremals (which we call type b
extremals). In distinction from type b extremals, every linear element
(y, 2) of type a extremals is independent of the other elements and minimizes
the function S(¢, y, 2) for every fixed ¢ &{a, #]. To obtain finite equations
of these extremals, we do not have to solve any boundary-value problems:
they are obtained directly in the form of the necessary condition (S. 52).
An extremal on U may belong either to this set or to a larger set U;. In
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the latter case, although EEU, the solution j(f), z(¢) fully describes a
minimizing sequence {y,} €U (see Definition 3).

II. The function f(¢ y, p, ) for p=0 and any ¢ y € B has a discontinuity
of the first kind in p.

In this case, no analog of Theorem 3 giving the necessary and sufficient
conditions of minimum and providing a complete solution of the problem
exists. We will only derive the necessary conditions of minimum in Uk.

The minimum is attained both on the (y, 2) minimals of the type
considered before and on the classical Euler—Lagrange extremals. Let
u EU;. By Theorem 2 we have

k 0

Pie1™

Iwy=31 | [Ft g Wt g sign(y'—2)]X
1=0 | ¥;+0
X (' —2)di-k (W (g, sign (g, i)t (s.39)

14

Here p; are discontinuity points of y(¢f). By (S.39), the functional /(u)
may be treated as depending on a pair of independent functions y(¢), 2(¢).
Using expression (S. 39), we can write and investigate the expression for
the first variation of /(u) with respect to y(¢) and z(¢) in the usual classical
sense. The class of admissible functions is further restricted by the
requirement of smooth z(f{)on the intervals (u;, pir1). The discontinuity
points u; are assumed fixed.

The necessary condition of minimum is

6/ (u) >0. (S. 65)

The expression of the first variation is

Eowiyg—0
W @=3 | [Fayt FaztW,(y—2)y+
i=0 P10

R
Wy —2Ndt+ 3 (W lk yi, sign(yi—y)] 3y, —
1=0

—W ps, i, sign(y;— y) by, —3y,)] dy,), (S. 66)
where
dy=y"()—y(t); Bz=z"()—z(t); dy'=y"()—y (),

y*({), 2*({) are the corresponding functions of the line u* € U, which is
sufficiently close to first order to the line u.

Since the functional (S. 39) is linear in y’(f), its variation with respect
to y’ coincides with the increment with respect to y’(¢f). Therefore y*'is
not necessarily close to y'(f) and we may take 6y(¢) € U. After simple
manipulations, the integral term in the expression of the first variation
is easily written in the form

B0
B () =Y, j ([Fy—=Wy(y'—2)] 3y+ Fy'+ (W—F,)3(y' —=) dt.
1=0 1xl-+0

This expression gives §/(u),;as a functional of four independent functions
y(t), z(f), dy(f) and 6(y'—=z(f)). Since dy(t) € U, we regard the functions
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y(t),z(f), and 8(y'—z(¢)) as given and use (S. 31) and (S. 39) to obtain

Biyp—0 sy

M @=3 | (FAW == [ 2 F g, 2@ at
1=0 Py +0 c=0
Bopypq—0
+ S [W (¢, y,sign(y' —z 43y’ —82)— F,]3(y’ —2)X
i=0 10
7 &y
><dt+2 [ S Fo(pr)at— jF p,)d&]JrE [W (2 g, sign(y;—y)dy,—
c=0 c=0
— — —_ kiR — —_
—~W (s, ys, sign (y—y)dy,] + DLW (4, gy sign (8y;—8y;)) — F.Y 3y — By)),
j=0

where k) is the number of discontinuity points of 8y (¢).
Finally we obtain

iy—0
d ’
a/(u)=2 j [F,,——d—t—Fz—|~Wy(y —z)] Bydt -+
i=1 W;t0
kom0
+Z S [W (ty Y, Sigﬂ (!’/,——z—l—syl_az))_—_
i=0 ®;+0

)4
— P13y —2)at+ S IW e, g0, sign (g — g7) — Falpy,—
=0
— W (u, T./h Sign(yi_‘;l»]—'Fz(p‘lv Zi, .T/) By,-] +
r—k

+ E[W(fi, g, sign(3y;j—3y.)) — F, ({1, yj, 27)] By~ dyy). (s.67)

7=0

Here 6y and 0(y'—=2) are independent variations. (S. 67) leads to the
following conclusions.

1. The functional may have a minimum only if the right and the left
limits of f({ y, £0,1) along the extremal satisfy the condition

W (¢, y, signe)e>0. (S. 68)

This is readily established if we take in (S. 67)

8y (f)=0
for
[¢—1fo| =M, 4H€ |a, b)
and
By =y (o) # 0
for

[t—f|<<n, |n|—0.
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For a maximum, this inequality should be reversed. This condition
can be regarded as the first necessary condition to be satisfied by the
functional if it is to have an extremum on the class U of admissible lines.

2. The extremals of the functional (S.13) may be of the following types:

a) The functions y(f) and z(f) satisfy the equations

S, = F,(t.y,2)—W,(ty,sign(y —z)z— W,(t,y)=0;
.= F,(t,y,2)—W(y,sign(y’ —2))=0.

(S. 69)

It is readily seen that these equations lead to zero coefficients before
oy and 6(y’—z). To verify this, it suffices to differentiate the second equation
in (S. 69) and subtract it from the first. Equations (S. 69) may be written
in a more detailed form

S,=Fy—W,(ty1) 2—=W,(ty,1)=0; } (s. 70)

SZEFZ—WU,_I/,I):O, y'—2>0;

SyEFy”‘Wy(t»y,_l)—W([y!/,—1)=0§ } (S. 71)
S,=F,—-W({y—1)=0y—2<0.

Along these extremals, the first variation is zero, i.e., the extremals
are stationary., Moreover, as we see from (S. 69), they satisfy the
necessary conditions of minimum of the function S(z, y, z), but now the
function additionally depends on the sign of the difference y’—z. These
extremals are analogous to the (y, 2) minimals of the previous section. Any
infinitesimally small section of these extremals retains the property of
maximum or minimum and is independent of all other elements, but only
within the limits consistent with the inequalities in (S.70) and (S. 71).

All that we have said in the previous section remains valid for these
extremals with one reservation: condition (S. 49) is not sufficient in this
case for an absolute minimum.

b) The functions y({) and z({) are continuous on (a, b) and satisfy the
conditions

d
t: 4 : _— = 1{J):
2=y (% F,——F.=0,
(W (¢y,signe}—Fy (tyy)]-e 20, e £0;

L (5.72)
(W (a,y(a),sign(y(a)+3y(a)—a)— Fy(a,pa), y' (a))]dy(a) > 0

(W (b, (b), sign (b, — 5 (b) —dy (b)) — F (6,5 (b), ' (0))] 8y (a) > 0.

The first two equations in (S. 72) define y(f) and z(f) and show that a type b
extremal on U(U,) is a continuous differentiable function which satisfies
Euler's equation. Every infinitesimal section of these extremals is
dependent on the position of the neighboring elements and, in general, does
not possess the property of maximum or minimum,

However, unlike the extremals in class C, the extremals in class U
should satisfy an additional condition on (a, #), namely the first inequality
in (8. 72).
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The last two inequalities in (S. 72) define extremal boundary conditions
for the determination of the integral constants C,and C,;. Since 8y(a)is
arbitrary, the first of these inequalities is satisfied if one of the following
three conditions holds true:

) W(a,y(a),)—Fy (a,y(a), y'(@)=0;

y(@)—a, >0
2) W(a,y(a))—Fy (a,y(a)y'(a) =0; (S. 72a)
yla)—a, <0;

3) y(a)=a,.

The second inequality defines analogous conditions at the right end.
Thus, if the solution of Euler's equation is unique for each pair of
these boundary conditions, this equation together with (S. 72a) and
analogous conditions on the right end may produce nine type b extremals.
The first two equalities in (S. 72a) constitute natural boundary conditions;
they are meaningful if y(a)—a,;>0 or y(a) —a;<0, respectively. The last
equality in {S. 72a) follows directly from the first inequality in (8. 72); it
shows that the solution of Euler's equation for the boundary conditions
y(a) =a, and y(b)=b, is also an extremal in U.

c) It follows from (S. 67) that, in addition to type a and type b extremals,
there are also mixed extremals consisting of pieces of type a and pieces
of type b, with the functions y(f) and 2z(¢) suffering discontinuities at the
points .

In drawing up the expression for the first variation (S. 67), we used the
comparison lines u* whose functions y(f) and 2(f) are close to the original
y(t) and 2(f) everywhere, except at the discontinuity points u;,. We now
enlarge the group of comparison lines by including (y, z) lines with the
discontinuity point displaced in an e-neighborhood of pi. Using expression
(S. 61) for the functional /(u4) and comparing it with the functional along
these lines, we obtain, as in the previous section, an additional necessary
condition, which should be observed at the discontinuity points p,:

S (i, Yir 20) =S (Wi, Ju, Z4). (S.73)

Here the pairs of functions y({), z(f) and 7 (¢), Z(f) are either one of the
solutions of system (S. 69) or the solution of Euler's equation with z(#) =y ()
and one of the boundary conditions at the discontinuity point wu,

D) Wy, 1)—F, (royny)=0;

yi—y: > 0;
2) Wy —1)— F e (2. 404;)==0;

3) v :—gi:

(S.74)

considered jointly with one of the analogous conditions at the other end
point.

We have thus established that if the left and the right limits of
f(t, y, =0,1) exist, and are different from each other, the functional (S.13)
may have extremals of two types, a and b. Type a extremals are analogous
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to the (y, 2) extremals of the previous section, and type b extremals coin-
cide with the extremals in the class of continuous functions on (a, b).
There are also mixed extremals consisting of pieces of types a and b.
Additional necessary conditions have been derived which the functional must
satisfy in order to have an extremum in U, which coincides with a weak
local extremum in the class of continuous functions C.

1.4, Special cases

We will now consider the most characteristic particular cases when the
condition of existence of ®(u:, ¥, ¥) enables us to fix the various dis-
continuity points of the extremal J(!) and to determine its qualitative
behavior.

1. The functions f(¢{, y, =0,1) do not exist anywhere in region B in the (¢, y)
plane.

The function @ (¢, y, §) does notexistforall ¢ y, j € B, y5§. The integral
(S.13) exists and is finite only on the continuous curves from U. The minimal,
if it exists, belongs to this category. The problem thus reduces to finding
a minimum in the class C of continuous functions. Further investigation
of this case requires application of the theoretical-functional techniques
{1 —4) described in the introduction,

An extremal in general depends on two parameters which are determined
by the values of the function y({)at the two ends, y(a)=ay; y(b)=5b;. Under
certain conditions, this is a smooth curve satisfying the Euler equation.

Functionals with the functions f({, y, +0,1) existing at a finite number of
points f{=p; are close to this type. As before, the condition of existence of
@ (¢ y, §) limits the class of admissible curves to curves from U on which
y(t) is continuous everywhere, possibly with the exception of {=p; (i=1,

2, ..., R). The minimal, if it exists, also belongs to this set.

The problem thus reduces to finding an extremum in the class of
continuous piecewise-smooth functions and determining the extremal
"matching' conditions of the continuous pieces at the verticals t=p;. We
will confine our analysis of the functionals of this type to the derivation of
the "'matching'’ conditions and discussion of some of the corollaries.

These conditions are determined by the properties of the function
f(¢, y, p, 1) for p=0on the straight lines {=p,.

II. The function f(f, y, p, 1)exists and is continuous on the straight line

t=p;, p=0, To(p) <y < (p).

Consider one such value f=p € (g, b). The function W is independent
of signAy, i.e.,

Wi g, )=W(u, g —1)

and we may write
O (1 5,5)= @ (1,5,¢) — @ (11,9,), (S. 75)
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where ¢ is a constant.
By (S.18) and (S. 75),

I ()= [+ [,

R

IO = F(ty,y')dt —® (w5 (),0); (s.78)
b

/mzj Fty,y")dt+ @ (p,y,0).

s

/(u) thus separates into two independent functionals. Therefore, its
extremal is made up of two continuous pieces, which are extremals of the
independent functionals (S. 76), joined by a vertical segment t=po. Since
®(w, y, ¢) is continuous together with its derivative, these pieces at t=pp
satisfy natural boundary conditions of the form

d
F, —

@ (n,y,0)=0; Fy— % @ (p,y,c)=0,
‘[yO Yo

F!/' (P‘Ovy()w!/(,))— W (P‘Ov.l/()): Ov
Fy'(!"m?o,?/{))“w (P‘o,;o)':O. (5.77)

It is remarkable that each piece of the extremal depends only on the
position of one of its end points, and is independent of the position of the
other end. If the continuous pieces of the extremal are piecewise-smooth,
they satisfy Euler's equation with boundary conditions (S. 13) and (S. 77) and
Erdmann—Weierstrass conditions at the corner points. In the particular
case W(t, y)=0, conditions (S. 77) coincide with Razmadze's conditions
for a fixed discontinuity point /13/.

The results are readily generalized to the case of n discontinuity points.
In this case, the extremal consists of n+1 continuous pieces, and each
i -th piece of the extremal coincides with the extremal of the functional

u, Y v

L= | Ftyy)dts [ W Ddi— [ Wi bds (s.78)

Piy ¢

Each of these extremals is a curve dependent on two parameters. These
parameters are determined from the natural boundary conditions at the dis-
continuity points pi-1and p;:

Fy (e iy, y}_1) ~W (i1, y,—) =0,
-, — . (S.79)
Fylenyny)—W(ey)=0,i=12, ... ,n—1.

For the first and the last piece of the extremal, the two parameters are
determined from the conditions

y(@)=ay; Fy (20.90.95)— W (#6,40) =0 (S. 80)
and

Yby=by; Fy (20Ypyn)— W () =0. (s.81)
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If the continuous sections of the extremal function are piecewise-smooth,
they satisfy Euler's differential equation for the functional (S.13) and the
Erdmann—Weierstrass conditions at the corner points. A remarkable feature
of the extremals is that, with the exception of the pieces adjoining the end
points, they are independent of the values of the function y(f) at the ends

of [a, b].

I1I. The functions f(ui, y, p, 1) are discontinuous in p for p=0, but the
limits f(us 4. *£0,1) exist and are continuous for y C[Ta(ni), T'i{p:)l.

Consider one such point
t=po € (a, b).
By (S.18)

] L
1wy=[ F(t, 7, ) at+© (o) + | Flty)dt. (S.82)
0 o
The function @ (o, Yo, Jo) in this case no longer can be written in the
form (S. 75) and its derivatives ®y and @y are discontinuous at Yo—ifo=0.
These derivatives are expressed by the following relations:

o :{W(Poyo,]) for y0~—20>0;

vo W/(P()v!/m_—l) for yo— yo<_0; (s. 83)
®- :{_W(Pt)a_yml) for yo—yo > 0; '

ve — W (.40, — 1) for Yo—yo<<0-

We will only consider the case when the continuous pieces of the extremal
are smooth. Then the first variation of the functional (S. 83) may be written

in the form
Ho
d

&/ (lL):S {Fy~ y

a

F!,] Sydt -+ F y (b9, 4o, 90) 8o+

b
li - R —_—
+S [Fy_’l’il‘ f‘y’} Bydt— F y (o, Yo, Yo) Byo+ 8D (¥, Yos Yo)s (S. 84)
o

where
w (P‘Ovyﬂ’l) 8.’/0_ w (P‘Ov%vl)ago

0 (i 5= npu yo_!;o>0
o, Yo Yo W (po, tfo,—1) g — W (Pov_ym —1)3y,
for yo— yo<0 (S. 85)

W(Po,yo,l)(syo—syo), if Byo*87/0>0 for yo—yozo'
W (.o — 1) (3o — dgg), if By -3yo<{ 0
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The necessary condition of a minimum of the functional /(u) is
6/ (u) >0. (S. 886)

This condition is satisfied if both pieces of the extremal satisfy Euler's
equation

Fy— Fy=0, (S.87)

A
dt
and one of the following conditions is satisfied at the discontinuity point:

Ft/' (P’anmy('])— W(PovyO‘l):O’

__, - (S. 88)
F!/' (P'OV!/OLUO) - W (l“"Ovy01 + 1):0;
Yo— 4% >0
Fy (Po»ﬁr)vz;)’)"‘w (uo,y_o,—-1)=0; (5. 89)
F!/' (P’O’yOnl/O)— w (P‘an(h - 1)= O,
Yo—Yp<_0;
[Fyr (."'O:ymy{))— W (0,40, 1)] [Fy (P-o,ljo,yé)— W (o, 50, — D] <0 (S.90)
yo“;o =0.

Thus, if Euler's equation (S. 87) is uniquely solvable for the boundary
conditions (S. 14), (S.88), (S.89), and (S. 90), the functional (S.13) may have
three extremals in this case which satisfy one of the three conditions above
at the point where the limit f[(¢ y, +0,1) exists. Two of these extremals,
specifically those satisfying conditions (S. 88) and (S. 89), are discontinuous
at this point. Unlike case II, the continuous pieces of these extremals are
no longer independent of one another, since their end points on the line
t=pg are interlinked by the inequalities in (S. 88) and (S. 89); however,
between the limits compatible with these inequalities, the different pieces
are still independent. Condition (S. 90) shows that besides discontinuous
extremals, a continuous extremal may also exist in this case, satisfying
Fuler's equation and the boundary conditions (S. 14).

If there are n points u; (i=0,1,2,...,1—1) on the segment [a, 6] at which
the limits W(u,, 4, 1) and W(u,, v, —1) exist but are different, the necessary
extremum conditions are satisfied by any function y(¢) consisting of
continuous pieces which satisfy Euler's equation, conditions (S. 14) at the
ends, and one of the conditions (S. 88), (S.89), (S.90) at the points Wi

(=0, 1, ..., n—1). In particular, one of such functions is the continuous
function y(¢) satisfying Euler's equation on [a, 6] with boundary conditions
(S.14).

We considered the most characteristic cases when the existence of the
integrals ®(ui, Y1 §:) provides some indication of the qualitative behavior
of the minimal and fixes the position of the discontinuity points. In addition
to cases I—11I, there may be mixed cases when for some {=p; the conditions
of case II apply, whereas for {=p; the conditions of case III. In some cases,
only one of the limits f(p, ¥y, =0,1) may exist on the vertical {=pq, e.g.,
f(u, y, +0,1). 1In this case, the condition of existence of ®(p, Yo, Jo) shows
that the minimal 7({) at {=pg may only display a positive jump satisfying
(S.88) or not jump at all, i.e., yo—Fo= 0.
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1. 5. Examples

Example 1. Consider the extremum of the linear functional

1=\ [P(t,y)+Q.n) y']dt, yla)=a,, y(b)=b,. (5. 91)

D{.’ﬁv

This example is of independent interest because of numerous applications.
We have

- 1
F3,0.1)=lim p[ P+ Q—]=Q(t, o)

Wt y)=Qy)
. (S.92)
S=P(ty)— | Q,(t5)ds.

c=Const

For the functional (S. 91) to attain an extremum on the function y=y(f),
it is necessary and sufficient for the function of a single variable S({, y) to
have an appropriate extremum for every fixed ¢ €[a, 6]. The equation of
the extremal is

Sy=Py(t, y)—Qu(t, y) =0, t C (a, b). (S. 93)

We thus obtained the necessary and sufficient condition of extremum of
a linear functional (S. 91) in the class of curves with vertical segments.
The extremal, in general, consists of vertical segments f=a and t=>b and
the curve (S. 93) and belongs to the set U.

Equation (S. 93) also can be obtained by the method of variations, in the
form of degenerate Euler's equation. Using Green's theorem, we can
derive the sufficient conditions for a strong local minimum on its solution
y°(¢). It coincides with the condition of local minimum of S(f, y) in the
neighborhood of y° for every fixed . Ifequation(S. 93) has several solutions,
the absolute minimal consists of pieces of these solutions and pieces of
the boundary, joined by vertical segments.

The construction of the absolute minimal from these pieces by the
method of variations combined with Green's theorem is not a simple
process. Our method provides an attractively simple solutions to this
problem: using (S. 92) we construct the function S(¢ y) and for every fixed
{C [a, b] find the value of §(f) on which S(¢, y) attains it least value on
the segment Ty (f) <y<T(f).

The fact that S is independent of z signifies that there are infinitely
many minimals # in Us. This category includes any (y, 2) line a = U, with
a zero closeness function 7(f) constructed by the above method for an
arbitrary (finite) local slope z(f). In other words, any sequence of polygonal
lines {y.} ( U satisfying the condition

Yi=yg(ti+0), ly: |<M, i=0, 1,..., n—1,

where M>01is any number, is a minimizing sequence.

182



Let P=Q=ty. The equation of the extremal is {—y=0, {C(a, b). Further,
2
S=ty— %‘ Along the extremal S= % we have

2 2 1

Therefore, along a polygonal line consisting of the vertical segments
t=a and t{=b and the straight line (S. 93) the functional attains its absolute
minimum. The extremal is unique.

Example 2. (Razmadze). Consider the extremum of the functional

b
r={ sin(yy)dt; y(ay=ay; y(b)="by. (S.94)

a

The following conditions are satisfied:
f{¢ y,0,1)=1im psin (y —l—) exists and is continuous;
p0 P

Wy)=0;
S(t,y,2)=F({,y,z)=sin(yz);
Snmx= I; Smln(yyz)': —1

for any y and 2, so that we obtain the following equations for the two
families of extremals in Up:

yz=—-+ 2k, yy'z__;‘_+2/m, (S.85)

k=0,+1,42, ...

The equations of the pieces of the extremals belonging to U are

yy' =— 2%k, yy' = — - 2%,
Integration gives

y?= (2t - 1)t -+ Cy; y2=(2k—V)at+C,. (S.96)
E=0,4142, ...

Since the function S is independent of C;, any extremal may have dis-
continuities at any point £ € [a, 8]

The functional (S. 95) thus has two families of extremals in U, consisting
of pieces which satisfy the first and the second equation in (S. 96), with
arbitrary C;, and have any number of discontinuity points with arbitrary
abscissas. On the first of these two families the functional (S. 94) attains
its absolute maximum, and on the second family its absolute minimum.

Example 3. Minimize the functional

b

l(y)=f|yl V1+ytdt, (S.97)

a

y(a)=a,; >0, y(6)=56,>0
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(the problem of the least surface of revolution), Here

: 1
Wty £ D=lmiy| | 1+— Z==|y)

where W depends on the sign of p. Therefore, the functional (S, 97)
corresponds to type Il of the general case.
Further,

Wy, signe)-e=|y-e|>0,

i. e., the functional (S. 97) satisfies the necessary condition of the existence

of extremum (S, 68).
Let us find a type a extremal. We have

Sty2)=ly| V1+22—|ylzsign(y’ —2); (S. 98)
S(y.2)=|y|V1422—zsign(y’ —z).

We use the necessary and sufficient condition of a local extremum (S. 49),
which is also valid for functionals with a discontinuous derivative F,, such
as (S.97). We have

Smin(y, 2)=S8(0, z) =0.

The equation of the extremals is
y(t) =0; a<i<d (S.93)

for any 2. Since zis arbitrary, there exist infinitely many type a
extremals in U,. This is a reflection of the fact that for any curve y*({) %0,
|g*(t) | <n, where n is sufficiently small, there is always a polygonal line
with arbitrary section slopes

Yy, =2(4) and y;=0 (i=0,1,...,n),

where n is finite, such that /(y,) </{(y*). Among these extremals, there
is one which belongs to U, specifically

y(t)=0; z(t) =y ()= 0; a<t<b. (5.99)
This extremal is unique., It is continuous on (a, b) and has discontinuities
at t=a and f=»5b. The surface of revolution of this curve comprises two

disks of radii g;and b,, joined by a tube of zero radius. The minimum value
of the functional (S. 97) is obtained from (S. 40):

=

Lon={ Spu(g,2)dt + Solylsigwbl—;(b»dy—

—ELI yl sfgn(y(a)—al)dy=% (a248?).
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Letusnowfind a type b extremal. For a curve to be such an extremal in
U, it is necessary and sufficient for it to be an extremal in the class C of
continuous functions on (g, 4), and for the functional to satisfy the first in-
equality in (S. 72) along this curve.

Let us check this condition.

[W (¢, y,signe)—F,]e =], [s _s‘L_]> 0.
vle=lyl|le] e b

This condition is satisfied identically, and therefore all extremals in C
are at the same time type b extremals in U. The extremals in C satisfy
Euler's equation, whose solution in this case is described by the catenary

t—C
y==Cych - 2, (S.100)

1

where C; and C; are integral constants. These constants are determined
from boundary conditions (S. 72), which in this case take the form

yla)=0; y(b)=0;

- (S.101)
ylay=ay; y(b)y==b,.

Three pairs of boundary conditions (S, 101), together with (S.100), yield
the extremals b, b;, by, which are shown in Figure S. 2. The fourth pair
y(a)=y(b)=0 when inserted in (S. 100) leads to equations which are unsolvable
for C; and C,. This is a reflection of the existence of an extremal which is
not a catenary, i.e., does not satisfy Euler's equation. This is the previously
considered polygonal line ACDB, a type a extremal, which is continuous and
differentiable on (a, b).

c T D x

FIGURE S.2

Finally, let us find mixed type extremals. Since the function S(y, 2,
sign(y’—z)) is everywhere zero on the { axis and is independent of 2z and,
moreover, y==0 for all $>0, condition (8. 73) is satisfied if and only if

yi=y,—0.

Thus, in addition to type a and b extremals, there are infinitely many
mixed type extremals (type ¢ extremals) in Figure S.2. However, only two
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extremals satisfy the sufficient conditions of minimum: the type a extremal
by (S. 49) and the type b extremal which is continuous on [a, ). The absolute
minimum is attained on one of these curves, depending on the relative

position of the points A and B.
Example 4. Find the extremal in U of the functional

Iw)=\ &yt
() L Y (S.102)
y(—1)=—1; y(4+1)==x1.

We have 0</(u) <oco, so that we need only consider a minimum, The
function W(¢, y, =1) does not exist anywhere on [—1, 1], except at the point
t=0, where

W, y, )= W(0, y, —1) =0,
i. e., we are dealing with a type II functional. Therefore, the extremal of

functional (S. 102) consists of two continuous pieces joined at t=0 by a
vertical segment. The left piece is the extremal of the functional

0 7o 0
L= { eyt [ w©ydy= | eyrat
—1 c —1
for y(—1)=—1 and the right piece is the extremal of the functional

1 Yo 1
Iy={ 8yait § w(0,pay= | pyrar
0 ¢ 0

for y(1)=1,

Each of these functionals if positive definite and vanishes for y'=0.
Hence, their minimum is attained on straight lines parallel to the ¢ axis
which pass through the points (-1, —1) and (1, 1), respectively. The
extremal uy, consists of these straight lines and a joining straight segment
t=0,

I (uo) =0.

Example 5. Minimize the functional

j: 2 ' ] ’ .
gw (14y)+siny'at, (5.103)
y(a)=a; y(b)=0,.

We have

f(ty, £0,D)= lim = [y2(14 p)+ sin p]=g,
p—t0 P
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i.e., [(t y,0,1)? exists and is continuous. Moreover,
W=y
S=y2+sinz;
Sun(y,2)=S (O,Qnm——g—-)= —1.
m=0,1,2,...

The functional (S. 103) has countably many minimals {#m}< Up. They all
have a common zero closeness line

g =0; a<t<b (S.104)
with different local slopes

- n

zm(t)_—.erm—T. (S.105)

This set contains no lines from U.

§ 5.2, FUNCTIONAL ON THE SET OF FUNCTIONS
WITH A BOUNDED DERIVATIVE

The above results can be applied to the fundamental problem of minimizing
the functional

1(u)=§F(t,y,p)a’t (s.106)
under the constraint
y'=g(ty,p); (S.107)
lPI<T; (S.108)
yla)y=ay; y(b)=b,. (S.109)

It is assumed that F({ y, p) and g(t, y, p)are continuous and have continuous
partial derivatives for any ¢ and y for [Pl < 1. 1t is moreover assumed that
for these ¢, y, p

og
op >0 (s.110)

and the functions g(f y, 1) and g(t, y, —1) retain a constant sign.

Our problem thus can be stated as follows: among the pairs of functions
y(f), p(¢) satisfying conditions (S.107), (S.108), (S.109), find a pair y(f), p(¢)
on which the functional (S. 106) attains its minimum value. If y(¢)is given,
equation (S. 107) uniquely defines the function p(#) =g~'(¢, y(t),y’(f)). The
problem is therefore equivalent to minimizing the functional
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5
Hy)={ F(ty.9)at (S.111)
a
yla)=ay; y(6)="b
on the set of functions y(¢) with a bounded derivative
gt y, —1)<y' () <g(t v 1). (s.112)

Here
F(t,y y)=Ft y. g7t 4. )] (S.113)

Let us elucidate some properties of the set of comparison lines, which
is designated U?:

1) By (S.107), (S.108), and (S.110), the function y(¢)is continuous along
the line u € U? and p(f)(and hence y’(#)) is bounded and may have dis-
continuities of the first kind.

2) The line uCUP belongs to a closed simply connected region G in the
(¢, y) plane whose upper boundary y=I:(f) corresponds to the solutions of the

equations
y'=g(t y, 1) and y'=g(t y, —1),

respectively, passing through the points A(aq, a;) and B(b, ;) and the lower
boundary y=I'(¢) to the solution of the equation y'=g(f, y, 1) passing through
B and the solution of the equation y'=g(¢, y, —1) passing through 4.

3) We impose an additional restriction on U?, namely that p(f) is
piecewise-smooth and may only have a finite number of discontinuities
of the first kind, and consequently may only contain a finite number of
sections with p=1or p=—1I.

Let “0)

y=e,7);
y=4(tT) } (S.114)

be the general integrals of the equations
y'=g(t g 1)

and
y,=g(tv yf '—l)s

respectively. Here 7 and T are integral constants. We have

CPI:g(tvy’l)v
b=g by, —1). } (s.115)

In virtue of the above properties of the function g(f, y, p), only curve

y=o@(t, 1) or y=v (¢, T)passes through each point fo, yo in G, i.e., to every
point (fy, ¥s) corresponds a single pair of values T and T.
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Consider a pair of piecewise-smooth functions y(¢) € Ur and q(¢),
where |g|<1. We construct the following sequence of polygonal lines
{y=} €UP: the segment [a, b] is partitioned into 2 intervals by the points

a=to<t1< e <l‘n—l<tn=b'
We take

yn(t:) =y () (S.115a)

and through each point (¢4, y(f;)) pass a pair of curves y=¢{(f, ;) and
y=v(t, T;) which together with the pair y=@(¢, Tiu1), y=v¢({, Tiy1) on (f; tig1)
define a region G; of the admissible values of y.(f), which is constructed
along the same lines as the region G. For all (4, t;;,) we take

Pa=q(t) (S.116)

and y,(¢) is correspondingly set equal to the solution of the equation
y'=g(t, y. g(t)) for those t C (t, tiy1) where this solution belongs toG; and

Yn(t) =@(¢, Tir1) or yn(f) =9 (¢, Tipl) (S.117)

for all other ¢ & (#;, ti41). The choice of equality (S.117) is determined by
the condition of continuity of Ya(f).

We say that the sequence {vyn} approximates to the line u ¢ U? or {yn}—u
and correspondingly {yn(f)} —u if e

y()=g( y q) (S.118)

almost everywhere onla, b}, and for n—oo,
|ti41—ti| max—0. (S.119)

If the pair y, g does not satisfy (S. 118), we say that {y,} approximates to
a (y, q) line 4, CUZ, or {y»}—uo; y(¢) is the zero closeness function of the
line uo, and g(f) is a local value of the parameter p.
We take
I ()= lim [(u,). (S.120)

{Tp) 0

Theorem 1. The functional /(uo), 4o C U#, exists and may be re-
presented in the form

b
1) = (F (g, = D+IF .y )= F by, £ D)) X
v oglyatl) gy, (s.121)
gy ) —glty, 1)
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where
*1=signly'—g (% y, 9)]

We have
n—1
/(Y,.)ZZO {F(fi,thi‘(tz“ft)JrF[fhy,',Sign(_l/Hl—
—yED (e —2)) F 0 (aty), (S.122)
where

yi=y(t); qi=q(t:); Ati=ti—t,
f; € (i, tin) is the abscissa of the point where the straight line
y=yi+g(t, yi q:) (t—t;) (S.123)
meets the boundary of G;, i.e., intersects the curve y=g¢({, tiq) if
Yir1—y(8:) >0 and the curve y=vy({ Tiy) if yiq—y(£:)<0.

We have

£ —4 Yy ) —gtg, 1)
= - +o(af));
At; &y q0) —g iy £ 1) Folat;

) . (S.124)
sign|yi—y ) =sign [y, —yi— g (t,yi 4 X

X at|=sign{y'(t;) — g(t;.y:,9,)+ 0 (82))].

For sufficiently small Af;,
signlyivi—y () I=signly’ (t;) —g (i, ys, 93], (S.125)

if
y () £g (i, yi, qi).

From (S.122), using (S.124) and (S. 125), we find
n—1

/(Vn):E {{F &, yh‘h)—F(ii»yhiI)]} X

=0

y;—g(ff,yl. +1)
gtyngn—gly, + 1)

1 F(fl,y,-,ix)} Aty +o(at)). (S.126)

The argument +1 in these expressions stands for
signly’(t:)—g (t:, yu, 4:))

In virtue of the properties of F(4, y, q), y(¢), and ¢(¢), the function

F(t,9.9)—F (ty, = 1)] 4L O —£Cy10, £ 1) F(t, y(t), 1) (S.127
(Fy.a)—Fty + N trtao —etsman T EIOED | )
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is bounded and continuous almost everywhere on [a, b]. Therefore, by the
Lebesgue theorem, it is Riemann-integrable. The limit (S. 120), where
I(yn) is defined by (S. 126), therefore exists, is equal to (S.121), and does
not depend on the choice of the sequency {yn}—u. Q.E.D.
Corollary 1. If y=g(t y, g), the integrand in (S.121) is equal to
F(¢ y, g9) and, therefore, definitions (S.106) and (S. 120) coincide on U?,
Corollary 2. Since y enters the integrand in (S.121) in linear form
for y—g(¢t y, 9) 0, and does not appear in the integrand at all for
y'—g(t, 4y, g)=0, the functional(S. 121) is continuous on U£in the sense that for
any given €>0 there exists 6>0such that

[ (u)—1 () |<e, (S.128)

if ly—7l<n, 19—§|<d almost everywhere on [a, b]. According to the lemma,
the minimals in U? and Uf coincide, and therefore instead of minimizing the
functional in U? we can minimize it in the class UZ of (y, g) lines, using
expression (S.121) for I(uy). However, expression (S.121) in its original
form is not particularly convenient for the determination of the absolute
minimum, since it contains the derivative of the zero closeness function y.
We will adopt a different approach and try to establish a relationship between
this problem and the problem of minimum of 7(u), uy € Us. To this end,
we use (S. 31) and Theorem 3. Along any line u € U?, the equation y({) =
=@(t, 1) defines a piecewise-smooth function {=£(t) which has dis-
continuities of the first kind atthe points t=u; (i=1, 2, ..., n)corresponding
to the sections p(f) =1 of the line u, if any. Since each 1 corresponds to a
single ¢, the variable T can be chosen so that {(t) is an increasing function,
i.e.,

LN (s.129)
dt
on the smooth sections and
t(t+0)—f(x—0)>0 (S.130)

at the discontinuity points.

The functional /(#) may be considered on the set of the functions y(f),
and not on the set of y(r), if we make the following substitution of variables
in (S.106):

f==9,(7, y);
?1.-& (1,9,1) d (S.131)

TY

df =
gle1,y. 1)~ g(e1.4,p)

wheTe @i(7, y) is the inverse of ¢(v, f). Since g({, y, 1) maintains a constant
sign, it exists and is continuous and differentiable.

We have
=1 Fiyq n
Iwy=2 | Fivgpdi+ Y @, y.79) (5.132)
i=1 p; 1=t
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2.8 (91,4.1) (91,4, P)

g=g(t,y,p) = —- (S.133)
g(e1,4,1) —g(¢1.491,p)
where
y.l=a=r(a,a1), f‘nzp:r(bvbl); (S' 134)
?1.& (91,4,1)
Fi=F (#,,4,p) D (5.135)
g(e,y,1)—g(e1,0,p)
t ¥
= Flei(1,8),6.1]
D (1, =5 F(Lo(t1) 1) gt = Lm0, 4 S.136
(r.4.9) J (he(bihl) ig(san(r.E),E,l) ( )
I3 ¥
T S.136
y=—" ( a)

Consider the set U® of piecewise-smooth lines on which the function
y(t) is single-valued everywhere, except a finite number of points t=y;,
where y(r) may have discontinuities of the first kind. In the (¥, y) plane,
the set U® is a perfect analog of the set U in the (¢, y) plane, as introduced
in Chapter II.

We have U? ( U®, Let u & U*. This line belongs to U~ if

p()> —1; }

Y@+ 0)— y(p,—0)> 0. (8.137)
The condition p(t) <1 is satisfied automatically, in virtue of the particular

choice of the independent variable v. The vertical segments of the line u

in the (1, y) plane, T=y;, are the solutions of the equation (S.107) for p=1.

It follows from (S. 133) that for j—oo, we have p—1. p(1, 4, §) can be

expressed from (S, 133). Inserting the result in (S. 135), we obtain the

function F(t, 4, y). We have

_ ey, ) (S.138)

W (t,y)=lim F, (1,5,9)
g(91,4,1)

L
e Y
The functional /(u), #EU~, is defined by (S.132). Since the integrand in
(S.136) coincides with the limit (S. 138), and this limit does not depend on
the sign of the difference y;—¥: this definition coincides with Definition 1
from § 5.1, and the functional I(u), u CU*, corresponds to type I of the

. 1 . . .
general case, when the function pF, (1:, Y, ——) exists and is continuous for
p

p=0. Therefore all the theorems formulated for this case still apply to this

functional.
We introduce the set of (y, 2) lines U;. Here 2 is the local slope of the
line up € U§ in the coordinates v, . To every 2 corresponds some g defined

by the equation

z=g1(v, ¥, q). (5.139)

081
oq
gi(%, ¥, q) is continuous, we have z—2 if §—¢g,, and vice versa. The line
uy CU; may therefore be defined either by the pair of functions (y, 2), or

This is a one-to-one correspondence, since >0 for z=o0. Since

192



by the pair (y, g). We have referred to the function ¢ as the local value of
the parameter p. By Theorem 1, we may write

B
I (u)=§ §(t,4,2)d7+ (B,by,c)— ® (@,a1,0);

(S.140)
Y
S=Fi(r4.2)—W (vy)z— | W.(r9a,
4
where ¢ is an arbitrary constant, or, using (S.133) and (S. 135),
8
I{ug)=\ 8,(x,4,q)dv+® (8,5,,0)— P (,2,,0); (8.141)
P F(er.y.8) g (e, 1) —Fle,p,1) g (¢1,9,9)
g (T,0) 1) — g (21 (7 9) vy, q)
Y
Foerg g ey ) —Fe1,y.1) ge(91,9,1)
P R P e dy. (S.142)

c

The theorems of § S. 1 ensure a complete solution of the problem of
minimizing /on U*. To apply these theorems to the present case, we have
to establish a relationship between the sets U(‘) and U” C U{)’. This relationship
is established by the following lemma.

Lemma 1. Consider a (y, g) line 4y CU}. A necessary and sufficient
condition for the existence of a sequence of polygonal lines{y,}—uo; {yn} CU?,
i.e., a necessary and sufficient condition for &, C U2, is that the functions
g(tr) and y(t) satisfy the constraints

g(v)=—L (5.143)
y—e1(t, ¥, 9) 20 (S.144)

at the points of continuity of y(r) and the constraint
y{n:) —7 () 20 (S.145)

at the points of discontinuity w: of y(z).
Necessity. 1) By (S.137), the sequence {y,} approximating a (y, ¢)
line u € U} belongs to U~ if

7(m> —1 } (S.146)

_1/1—;1} 0.

(S.143) follows directly from these inequalities.
2) Let at the point 1 & (a, B),

7 (t0) —gi (to, ¥(%0), g(10)) <O.

Let yn be an approximating polygonal line sufficiently close to u, and T
and Ti+1, Ti<<To'STiyy, are the partition points closest to To. We have
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Yror— i1 =Yis1 —Gy— §, (V) AT, =
=y (to)— & (T0, 4 (%), 4 (Tp))+ 0(AT))] AT}, (S.147)
Here t* C[ts, tin], Ati=7tisi—7i. Choosing n so that At is sufficiently small,
we find

Yir—Fin<0.

This signifies that (S.137) is not satisfied at the point Ti4;1, i.e., for
n>N(At;), the sequence {y,} does not belong to Ur. Thus, (S.143) and
(S.144) are necessary conditions. The necessity of (S. 145) is self-evident.

Sufficiency. Let (S.143), (S.144), and (S. 145) apply. The condition
p<1 is satisfied automatically on the entire set U~ (and therefore on U? also)
because of the particular choice of the independent variable 1. Construct
a sequence of polygonal lines {y.} approximating a (4, g) line u, CU;. We
will show that for n>N, {y,} C(U?P To this end it suffices to show that
(S.146) is satisfies for n>N. The first condition is true by (S. 143). Now,
let the zero closeness function y({) be continuous and differentiable on

(Tie1,Ti )

Tt Ni
Yi— Y=Y —5 gidv =S (y—g:(t,y,q) dr.
Ti—1 Ti—1

By (S. 144)

7—81=0,
so that

yi—§:20.

Let now y(t) have a discontinuity on (v;-1, 7). For sufficiently large n
(small Atmax), this is the only discontinuity on (i, ;). Then
yi—y=yW—y@+o(ar),

where u is the point of discontinuity of y(t). By (S.145), for sufficiently
large #,

yi—yi20.

Thus, for n>N, (S.146) is satisfied for all i=0, 1, ..., a—I1, n, Hence

v} cUP. Q.E.D.
A similar lemma for the lines u € U7 is proved by replacing (S. 143),
(S.144), and (S.145) with the following conditions:

gL (S.148)
d
—&(T.4,9)<0 (S.149)
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at the points where y(f)is continuous, and
y(T:4+0)—y(T:—0) <0 (S.150)

at the points T; where y(7T) is discontinuous.
Let §, § be a pair of functions satisfying the condition

S, (v,y, 9= inf S(,5,9) (S.151)

Ty(1) €y <Ti(r)i—1<g<L

and y* ¢* a pair satisfying the condition

S?(Tul'l*vq*): lﬂf S?(Tvy’q) (S- 152)
T,<y<l—-l<g<l.

Here Uf, go(T, 4, q), S2(T, 9, q) are the analogs of Uj , g1, S1in the coordinates
T,y.

We now prove the following theorem.

Theorem 2. Let the (y, g) line & € U} defined by the pair §, g satisfying
(S.151) satisfy conditions (S.143), (S.144), (S.145). Then # is the absolute
minimal of the functional (S.1086), i.e.,

1(&):1%%(@. (S.153)

It follows from expression (S.141) for I(u), u &€ Ui, that ¥ is a minimal
on the set of the (y, ¢) lines u € U} satisfying the additional condition ¢>—1.
Since this set encloses U?, we have /(&) <I(u),u ¢ U>.

If #f satisfies (S.144) and (S. 150), there exists a sequence {y.}—#,
{y»}CU~?. Thus, by definition of the lower bound,

I (@)= inf / (u).
ugt’?
Q. E. D.
A similar proof can be given for Theorem 2%,
Theorem 2% If aline u* € U? defined by the pair y*, ¢* satisfying
(S. 152) satisfies conditions (S. 149), (S.150), we have

I (a*)= inf I (u). (S.154)

« eu?f

Corollary. Let the line u* € U defined by (S. 152) satisfy (S. 148),
(S.149), (S.150), i.e., u* €UZ. Then, if I(&)=1(u*), where [(&) is defined
by (S.141), the line & does not satisfy (S. 144), (S.145), i.e., & does not
belong to Ug. The reverse proposition is also true.

Indeed, suppose that these conditions are satisfied on & &€ U;. Then, by
Theorems 2 and 2%, [(u), u €U?, has the lower bounds /(%) and I(4*), in
contradiction to the definition of the lower bound.

Theorem 3. Let the functional {S.106) have a minimum on the (y, g)
line Z € Up. Furthermore, let the following inequalities hold true almost
everywhere for the pairs §, § and y*, ¢g*defined by (S. 151) and (S. 152):

AV o 0
2t £(4,4,9)<0;

v *
o g(ty*,q*)>0.

(S.155)
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The minimal is then a continuous piecewise-smooth function.

Since 7 € UZ, we see that 7(f)and 7(¢) are piecewise-continuous and,
therefore, # may consist only of a finite number of sections on which one
of the following three conditions is satisfied: either 1) y'(8)—g(¢, 7, §) >0,
or 2) y’(t)—g(t, g, §)=0, or 3) §'(t)—g(t 7, 9)<0.

By the remark to Theorem 1, condition (S. 151) should be satisfied on
those sections where y'—g(f 7, §)>0, i.e., j=F and §=g, but this
contradicts (S. 155). Consequently, such sections do not exist. Similar
argument proves that sections of type 3 do not exist either. Therefore,
we have almost everywhere on [a, 8]

ie., wEU~r.

Corollary. Since the minimal # is piecewise-smooth, it can
be determined by ordinary classical methods, e.g., the maximum principle.
The minimal consists of a finite number of Euler pieces and pieces having
the limit direction p(f) ==*1.

Theorem 4. Let [71, € [a, B] be an isolated segment on which the
functions §(t), (1) obtained from (S. 151) satisfy conditions (S. 144), (S. 145).

We construct the following object u:

1. Ona, 1], the minimal @ coincides with the absolute minimal of the
functional

ll(u11y1)=5 FI(T1y1p)dT_q)(Tla yl)7 (S. 157)

with a free right end y1=y(11).
2. On (11, 12), the object u is a (y, q) line:

y=y(t); 9=9 (v). (S.158)

3. On [ty B), the object # coincides with the absolute minimal of the
functional

B
lz(uz,y2)=5 Fi(t,y,p)dt+ @ (T3,,), (S.159)
with a free left end ya=y(12).
If
!/1<Z(Tx),
~ (S.160)
¥2 2 y(19)
the object # is the absolute minimal of the functional (S.108), i.e.,
I (u)=inf / (a). (S.161)

u EUP

Proof. The functional /(&) may be written in the form

1@)=| Fdr—o@g)+ | Sag.dan+
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[} Tg
+ | Fide @ (r, )= 1m0 + @i+ | S(g,9)dr

T1

Similarly, along any line u CUP,

I (@)=1 () +1a a9+ § S(wy.p)ar.

By the conditions of the theorem,

(a9 — 1, (Elw;/—l) 0;
0

>
1o (g, y)—1, (2232) >

{ saypar—| sagpar={[S(y.p— SpPdr>0,

and therefore

() —I (%) 0.

On the other hand, by the conditions of the theorem and by Lemma 1, we
see that there exists a sequence {y,} CU? such that /(y.) —I(u). Therefore,
n—»ovo

in virtue of the definition of the lower bound, (S.161) applies. Q. E. D.

Remark. If t{{=aor =0, (S.160) is replaced only by the first or the
second inequality, respectively.

Corollary. If(S.160) is now satisfied at the points T, and vz, the
extremal pair (§(t), g(t)) does not necessarily coincide with 7 (1), §(z) on
{r1, T2}, but some of its properties emerge from Theorem 3.

1. If there exist at least two points 1=E§,, =& where

y(¥)=§ (1), (S.162)

for t €[&, E] we have y=§ and §=4.

2. If condition (S. 160) is not satisfied at a single point, Ti say, we have
F(tv) 27 () for v [t1, v2l. If at least one root £ C [t1, 2] of equation (S. 162)
exists in this case, for ¢<t<v, we have y=7, §=§. An analogous theorem
clearly can be proved for an isolated segment [, f;] on which the functions
7 (¢) and §(¢) defined by (S. 152) satisfy (S.149) and (S. 150). Inequalities
(S.160) should reverse their sign in this case.

Discussion. 1. It follows from the theory that the functional (S. 106)
on the set UP of functions with a bounded derivative has (y, ¢) minimals with
a "branched' derivative, similar to the (y, z) minimals of the simplest
functional. The role of the vertical directions in this case is assumed by
the directions p==1, .

2, As for the simplest functionals of type I (the function pF( t, y, ;) is

continuous for p=0), the solution of the variational problem should not start
with the solution of Euler's equations, i.e., we should not attempt to find a
weak local minimal on the class C;. A better approach is to set up the
function S;(4 y, q)(or S2(t, y, ¢)) and to find its minima 7 (x), §(t) for every
fixed ©C [a, B]. If the functions §(t), §(r) satisfy the conditions of Theorem 2
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(Theorem 2%), this completes the solution. The functions § (1), §(v) define
a (y, g) line & CU? on which the function (S. 106) has an absolute minimum.
If almost everywhere on [a, B,

j_gl (t1, ¥, §)=0,

we have & C Up. Otherwise, the pair §, § defines a minimizing sequence
{y»} €U?. For any given &¢>0, there exists N such that for a>N,

W (w)—I(7) | <e,

where u is any line from U~r.

3. 1If the conditions of Theorem 2 are not satisfied on & and u*,

Theorem 4 enables us to identify pieces of the absolute minimal on those
segments where the corresponding conditions hold true. To obtain a complete
solution of the problem in this case, we have to find the pieces of minimal on
those sections where the conditions of Theorem 4 do not hold true. These
pieces coincide with the minimals of the corresponding functionals (S. 157)
and (S. 159) defined on the corresponding sections.

4. If the lines # and u* satisfy the conditions of Theorem 3, the minimal
7 of the functional (S. 106) is piecewise-smooth when & ¢ Ugand it
can be found by conventional classical methods, e.g., by Pontryagin's
maximum principle.

5. If we compare the results with those of § S. 1, we see that the functionals
(S.106) with regard to their extremal properties are the closest to type I
functionals of the general case.

The strongest direct expression of this analogy is provided by Theorem 2.
However, unlike the type I functionals, functional (S.106) may also have
smooth Euler minimals, if the conditions of Theorem 2 {Theorem 2%*) are
not satisfied. In this respect, functional (S. 106} is closer to the simplest
functional of type II of the general case( f(¢ y, p, 1) has a discontinuity of
the first kind for p=0). There is a highly significant difference between the
two types: for type II functionals the minimum of S along the (¥, z) line
is only a necessary condition of a minimum of /() on the line 4y, and in the
presence of this minimal the absolute minimum may be attained on an
ordinary Euler extremal, whereas for the other type, as for simplest
functionals of type I, the minimum of S on a (4, ¢) line u ¢ UZ is a sufficient
condition for the absolute minimum of the functional on this line.

§ S.3. OPTIMAL PROGRAM FOR HORIZONTAL
FLIGHT OF AN AIRCRAFT

We will now consider the optimal thrust control for the horizontal flight
of a jet aircraft over a maximum range. This problem was dealt with by
Hibbs /15/ and by Miele and Cicala /14/. According to their results,
assuming a linear dependence of thrust on fuel consumption,

P=jB, (S.163)
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where P is the thrust, B is the fuel consumption, j= const is the effective
nozzle velocity, we can reduce the original problem to extremizing a
functional of the form

My

S [A(V, m)+ VBV, m)] dm, (S.164)

Mo

where m is the instantaneous aircraft mass, V is the aircraft velocity,
’=g—K . Euler's equation for this functional degenerates to a finite equation
m

94 _ 9B _ o, (S.165)
ov om

which in the general case does not pass through the given initial and terminal
points (Vq, mo), (Vi, m;) in the (m, V) plane.

An ingenious application of Green's theorem enabled Miele to construct
the sought solution and to show that it is made up of pieces satisfying
equation (S, 165) or the conditions PB=Pmaxand p=0. For the case of a non-
linear dependence P=P(B) the solution is no longer degenerate and the
method of Lagrange's multipliers must be applied.

In the present section, this problem is solved by a different mathematical
approach, namely by the theory presented in § S. 1 and § S. 2.

A quite general dependence P=P(B) is assumed, As in /15/, we seek a
dependence V=V (m) ensuring the maximum range for given values of me, Vo
and m;, V.. It is shown that this problem of maximizing a functional can be
reduced to maximization of a function of two variables S(m, V, B) for
every fixed m C (mq, m), where V and B are assumed independent. The
optimal program obtained in this way is found to be degenerate, i.e., in-
dependent of the position of the end points (m,, Vo) and (mq, V). In case of a
linear characteristic P=jB, j= const, Sis independent of B and the solution
V=V (m) coincides with that from /14,15/. If P=P(B) is nonlinear, the
absolute maximum range is attained with the "pulsed thrust' program,
which in fact constitutes the (¥, ¢) extremal that we mentioned before. This
program amounts to the following: the aircraft starts from the initial state
(me, Vo) with its engine off (B=0) or alternatively with maximum thrust
f=PBmax until it reaches some curve V=¥%m)in the (m, V) plane. After that,
the optimal program reduces to an alternating succession of powered
sections with some optimal thrust P(f)=const and coasting sections with cut
engines (=0, m=const). The engine is switched on whenever the
coasting velocity has dropped to V=V?(m). The engine switching frequency
should be as high as possible. The higher the switching frequency, the
deeper is the maximum. This program is continued until the aircraft
reaches the line =0 (m=const) or B=pnax passing through the point(m,, V;)
for Vo(m.) >V, orVy(m,) <V,, respectively.
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3.1, Statement of the problem

The equations of motion of a jet aircraft in horizontal rectilinear motion
are

my —P(h, V, B)+X(h, V, ¥)=0; ‘|
Y —mg,=0; |
. ! (S.166)
m=—§ [
x=V, ,I

where mis the aircraft mass, g.is the gravitational acceleration, x is the
horizontal coordinate of the aircraft, V is the aircraft velocity, % is the

altitude of horizontal flight, X is the drag, Y is the lift, 1'/=‘;‘j_t and m=2m

We adopt the following hypotheses regarding the forces entering (S. 166):

1. The aerodynamic forcesX and Y are independent of the aircraft
acceleration (the aerodynamic lag is ignored). Since the altitude is
constant, X and Y are functions of velocity only. X is furthermore a
function of the lift Y.

2. The thrust P is a function of the velocity V and the per-second fuel
consumption B. It may be written in the form

PV, B)=F(V)f2(B),

where f;(V) is the velocity characteristic of thrust — an arbitrary positive
function; fy(B) is the fuel consumption characteristic of thrust — an increasing
function, generally displaying the property f2(B)|<0.

B=0

The physical meaning of P(V, 0)is back-pressure. The dependence P(4)
is of no consequence, since

h=const.

3. The gravitational acceleration g, is constant. Equations (S. 166) are
in fact written assuming constant & and ignoring the effects of the Earth's
spin. The aircraft in these equations is regarded as a point mass,

4. The fuel consumption f§ may vary between 0 and Bmax-

Let us formulate the boundary conditions. We assume that at the initial
time {=0 the aircraft mass is mp and the velocity is Vy,. The point of origin
is chosen so that x(0)=0.

At the end of the flight, {=¢, we have

m=m,, V=V,, x=x,
where neither {; nor x, are fixed. Our problem is to find a system of

functions x(¢), V(¢), m(¢t), B(t), Y (¢) satisfying equations (S. 116) which ensure
a maximum range X; on the set of pentades

[x(8), V(8), m(t), B(2), Y(5)]
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satisfying (S. 168). We are dealing with five unknown functions and four
equations, i.e., the system has one degree of freedom. The last equation
in (S. 166) gives an expression for the functional to be maximized

x[=§ Vdt= _~S th_f + dm. (S.167)

my

Eliminating Y and df between the first three equations in (S. 166), we find

= [PV, =XV, m)L (s.168)

dm

The problem thus reduces to maximizing the functional

j‘ Yo (S.167%)
p
m
under the constraints

= ﬂ_—_ _L — . B
V= m =~ PV, B =X (m, V)] (S. 168%)

0B < Brans (S.169)

Vim)=V; V(m)=V,. (S.170)

Problems of this kind were previously considered in § S. 2. Here we
have

F(m, V, B)=l; (S.171)
g(m, V, ?)—~—[P(V B)— X (m, V)] (8.172)
In virtue of the above properties of the function P(V, B),
9%
3 <0 (S.173)
for all B € [0, Bmaxl.

To finally reduce this problem to the form discussed in § S. 2, it suffices
to replace B with an auxiliary parameter

ngﬁa —1. (S.174)
max
Inequalities (S. 169) then take the form
lpl<1, (S.175)
and condition (S. 173) reduces to
og
o > 0. (S.1176)
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For p=1, i.e., P=Pmax, the derivative V'=g(m, V, B) takes on the least
admissible value at the point (m, V) of the phase plane, and for p=I, g=0 it
takes the largest value:

V'=g(m, V, B)+ oo for 0. (S.177)

Physically (S. 177) signifies the fact that the limit value =0 corresponds
to flight with constant mass ( m= const), i. e., motionof the representing point
along the vertical in the phase plane (m, V). The
latter factor signifies that the independent variable
m has the properties of the auxiliary variable T in-
troducedin § S. 3 (constancy onthe limitdirection §=0).

Let us now establish the boundary of the region
B of the physically admissible values of the
function V(m). The boundary is made up of
pieces of the following lines (Figure S. 3):

Line 1: mg:—Y(V, dmax) =0, where amay is the
maximum admissible angle of attack. This line
is the lower limit for the admissible values of
the function V(m).

Lines 2 and 3: the vertical segments m=myp

Jy

m TTm
FIGURE $. 3 and m=m,,
Lines 4 and 5: lines of flight with maximum
thrust B=_Pmax passing through the points (mp, Vo) and
(m;, Vi) which give, respectively, the upper and the lower limit of the ad-
missible values of V(m).

3.2. Optimal control program

Let us first determine the function S(m, V, g). Here V(m)is the zero
closeness function of the sough extremal, g(m) is the local value of the fuel
consumption 3. Since the independent variable m is also the parameter,
we may use expression (S, 49) for S. Thus,

1%
S=F—Wg(m, V, 3)-§W,,,(m, £) dt; (S.178)
_ F(m,V,0)
=TT (S.179)

Using (S.171) and (S.172), we may write

W(m, V)=="Y . -(S.180)
x(m,V)
x(m, Vy=X—P(V, 0 (S.181)
Sim, V, =—+"E PV, 9)=X (m, V)]

Vv
—5 W, (m, &) dt,
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or, using (8. 181),

v
_Vfl(V)j(ll)_ L_] & L62
5= x(m, V) S[X(m,ﬁ)——P(E,O),,, ’ (S.182)
where
= RS (5105

For an ideal liquid-propellant engine, jis independent of B and gives
the ideal nozzle velocity.

Let us find the pair of functions V(m), g(m)on which S(m, V, g) attains
its absolute minimum over the set of admissible values of V and ¢ for
every fixed m C [my, mq).

Writing the thrust in the form

PV, B)=FhH(V)]2(B),

we can devise an attractively simple method of solution of the last problem.
In fact, the point g=g on which S attains its maximum for any m, V C B is
independent of m and V coincides with the maximum of the function j(B) on
0<B<PBmax. Figures 4a and 4b show two alternative fuel consumption
characteristics of the thrust program. Draw a family of imaginary rays
from the point (0, [2(0)) which have at least one common point with the curve
of fo(B) on the semi-interval(0, fmax). In this family, we select a ray ¥ which
makes the largest slope angle to the horizontal axis. The abscissas qi, ..., q:
of the intersection points of this ray with the curve f;(B) on the semi-interval
(0, Bmax) give the maximum of j(B), i.e., S, as we see from (S.183). Thus,
if P(V, B) is representable in the form of a product fi(V)f:(B), the optimal

value B=8 is independent of m and V.

fap) fap)
7 BTSN S PYSEL A
FIGURE S.4

The optimal dependence V0= V°(m) is specified by the condition of
absolute maximum of the function of single variable S(m, jmax, V°) in B for
every fixed m. As a necessary condition, it should consist of pieces of
the boundary of B and of continuous pieces satisfying the finite equation.

S =[ F1(V) Jmax ] _[ uld ] =0 (S.184)
VL xW.my—PV.0) v LXV,m)—P(V,0) |n
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which are joined by vertical segments at the points m=p; (i=1, 2, ..., r) where
S(l"'l’ jmax1 Vl (P‘l))':s(l"‘i, S maxs Vz(P'[)), (S. 185)

Vi(m) and V,(m) being two solutions of (S. 184).

Equation (S. 184) coincides with the equation W=0, the so-called
"singular curve' from /14/, i.e., it coincides with Euler's degenerate
equation for the case of linear dependence of thrust on fuel consumption,
if we take P(V, 0)=0, fi(V)=1 and jmax=Vp=const, the effective nozzle
velocity, is assumed constant. Here the first two conditions are the
simplifying assumptions adopted in /14/. Consequently, we can apply the
results of /14/ for qualitative estimate of the zero closeness function and
the optimal V=¥?(m). In other words, all the properties of the extremal
V(m) investigated in detail in /14/ are applicable:

1) Equation (S.184) has two solutions: supersonic V°=V?(m)>a and sub-
sonic Vo=V{(m)<a, where a is the velocity
of sound at altitude k4. Along both solutions

v y - v >0 (motion with decreasing velocity), and
vo(m) dm
V9 (m) invariably passes through the origin.
B Vo 2) The optimal flight program first follows
the line V,(m) up to the point m=p, where
Vi condition (S. 185) is satisfied. Then it changes
to coasting along the vertical m=p until it
reaches the line V,(m), and then it proceeds
along the line V,(m).
) The motion from the point (mg, Vi) to the
FIGURE S. 5 solution of (S. 184) and from the latter to the
point (m,, V,) proceeds along the appropriate
piece of the boundary of B, i.e., either with
=0 or with B=fmax, according as the points (m,, Vo) and (m., V,) are
respectively located below or above the line V0=§9(m)(Figure S. 5).

According to our results, the entire optimal function V=V%(m) is deter-
mind (with necessity and sufficiency) by the condition of the absolute
maximum of the function of a single variable S(m, jmax, V) in B for every
fixed m. ’

We have thus obtained a local value of the fuel consumption § on the
inclined sections, which is independent of m and V and corresponds to the
maximum value of j. We have also obtained the function V°(m) which
coincides with the optimal velocity V(m)if constant nozzle velocity jmax is
assumed.

By Theorem 2, the pair V(m), §(m)defines the absolute (y, ¢) minimal
i € U, if it satisfies the inequalities

m; M m, m

Vp40)—VE—0)>0, (S.187)

where p is the point of discontinuity of ¥(m). Inequality (S.186) is always
satisfied, since the results of /14/ show that if the minimal V(m) contains
pieces of both branches, V(m) and V2(m), motion always proceeds first
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along the supersonic branch V;(m) and then along the subsonic branch Va(m) .
It thus remains to check (S, 187).

0
As we have mentioned before, 'ZL—>O along both extremal branches. On
m

the other hand, according to (S.172), g<0 whenever
PV, B)=X. (S.188)

The last inequality always holds true, i.e., the maximum j as a rule
corresponds to a thrust which is greater than the drag. In this case, (S.186)
is naturally satisfied. The drag X increases with increasing V and m, so
that (S. 188) may fail, if at all, on the supersonic branch V,;(m). But on this

branch 4{}/—0 also reaches its maximum value (see /14/), and (S.186) is satis-
m

fied even if (S. 188) does not apply.

The pair V(m), §(m) thus constitutes the sought solution of the problem.
It defines a {V, ¢) line u C U on which the range has its absolute maximum.

Let us examine the physical meaning of this (V, ¢) maximal z.

Each approximating polygonal line y, & U represents motion with periodic
thrust switching. The inclined sections of the polygonal line y» correspond
to powered flight with fuel consumption B=g§(m;), and the vertical sections
represent coasting with the engine cut.

The engine is always switched on as soon as the coasting velocity with
m=m;reaches the value V°(ml-), and it is cut off when the mass drops to M.
The engine is switched on a total of n times.

We refer to this program as 'pulsed thrust" program with frequency #,
mean velocity V%(m), and power thrust ¢. The (V, ¢) line u € Uy represents
a pulsed thrust program of infinite frequency.

Let us now consider the extremal for various typical particular cases.

I. There is a finite number of values §; (i=1,2,...,k) satisfying the
condition j{B)=jmax (2 finite number of intersection points between the ray y
and the characteristic fz(B) on (0, Bmax)). All §; satisfy inequality (S. 186)
everywhere on [m,, mo].

The function $°(m) defined by the equation

. ="",,,%<T[P(‘7°, B)— X (0, m)] (S.189)

continuously varies with m. Since, on the other hand, any of the optimal

values q=ﬁi=const, we have g(m, V, q);&’iv—o. Hence, the optimal program
dm

is a (¥, ¢) line in the (m, V) plane, i.e., the '"pulsed thrust'" program of
prog

infinite frequency. The representing point in the {m, V) plane should
therefore move from position (mo, Vo) along the boundary of B (=0 or B={fmax)
until it reaches the zero closeness line V=¥%(m).

After that, the "pulsed thrust" program begins with maximum per-
missible frequency. The fuel consumption on the powered sections should be
equal to any one of the §: values, and the mean velocity should coincide with
the optimal function V=V°(m). This program should be continued until the
representing point again reaches the boundary. Then the motion continues
along the boundary until the terminal position (m,, Vi)is reached.
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1I. There is a finite number of values §: i=1,2,..., &

Some of them satisfy inequality (S. 186), whereas others do not satisfy
this inequality. The sought optimal is a "'pulsed thrust" program, similar
to that described under I. The fuel consumption on the powered sections
should be equal to any of the f; satisfying (S. 184).

111, There is a continuum of values

0 < PFp <P < Buay

for which j(¢) =jmax (the ray y has a common segment with the thrust
characteristic fa(B), Figure S.6). Part of the segment [fo, ] satisfies in-
equality (S. 188), where the other part does not necessarily satisfy this

inequality.

F2(p)

| L
s Pmax=p.

[
2@

FIGURE S, 6

The particular case [5':0, [3—[=[3max here corresponds to a linear thrust
characteristic. In this case, infinitely many optimal solutions exist. They
correspond to ''pulsed thrust" programs with infinite switching frequency
and a common zero closeness line V=V°(juax, M), which are analogous to
those described under I, but differing in that they may have any dependence
g(m) € [Bo, Bel 2s long as it satisfies inequality (S.188). As a particular
case, we may even take a dependence g=p%m) which converts the in-
equality in (S. 188) into equality. The '"pulsed thrust' program then
degenerates into Hibbs's continuous control /15/ originally derived for a
linear characteristic P(B), and the optimal function ¥V{(m) coincides with the
zero closeness line Po(m).

The physical meaning of the multiple solutions in this case is that the
range is affected only by the mean velocity ¥9(m), and is insensitive to
local deviations from the mean.

However, as the switching frequency is of necessity finite in practice,
a single minimal should be selected among the infinitely many optimals, on
which the range attains a strict maximum. This minimal coincides with
Hibbs's continuous thrust control characteristic.

In mathematical terms, the infinity of solutions implies that j= const on
[Bo, B:] and therefore the function S(m, j, V) is independent of g, being a
function of a single variable V for every fixed m.
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